Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants
Abstract
:1. Introduction
1.1. Fundamentals of Material and Components
1.2. Fundamental Physical Processes
2. Materials and Methods
2.1. Sample Preparation
2.2. Swelling Tests
2.3. Biocompatibility Tests
3. Results and Discussion
3.1. Hydrogel Processing and Particle Size Distribution
3.2. Swelling Tests
3.2.1. Design A—Hydrogel–Silicone Rubber-Compound Properties
3.2.2. Design B—Bimorph Hydrogel–Silicone Rubber-Composite on Silicone Rubber Base
3.2.3. Design C—CI Shape with Silicone Rubber–Hydrogel Top Layer
3.3. Biocompatibility Tests
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Sample Preparation
Appendix A.2. Biocompatibility Tests
References
- Wilson, B.S.; Dorman, M.F. Cochlear Implants: A Remarkable Past and a Brilliant Future. Hear. Res. 2008, 242, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenarz, T. Funktionsersatz des Innenohres. In Medizintechnik; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1933–1949. [Google Scholar]
- McDermott, H.J. Music Perception with Cochlear Implants: A Review. Trend Amplif. 2004, 8, 49–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesen, L.M.; Shannon, R.V.; Baskent, D.; Wang, X. Speech Recognition in Noise as a Function of the Number of Spectral Channels: Comparison of Acoustic Hearing and Cochlear Implants. J. Acoust. Soc. Am. 2001, 110, 1150–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gstoettner, W.K.; Adunka, O.; Franz, P.; Hamzavi, J.; Plenk, H., Jr.; Susani, M.; Baumgartner, W.; Kiefer, J. Perimodiolar Electrodes in Cochlear Implant Surgery. Acta Otolaryngol. 2001, 121, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.K.; Hatsushika, S.; Clark, G.M. Electrical Stimulation of the Auditory Nerve: The Effect of Electrode Position on Neural Excitation. Hear. Res. 1993, 66, 108–120. [Google Scholar] [CrossRef]
- Eshraghi, A.A.; Yang, W.N.; Balkany, T.J. Comparative Study of Cochlear Damage with Three Perimodiolar Electrode Designs. Am. Laryngol. Rhinol. Otol. Soc. Inc. 2003, 113, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Majdani, O.; Lenarz, T.; Pawsey, N.; Risi, F.; Sedlmayr, G.; Rau, T. First Results with a Prototype of a New Cochlear Implant Electrode Featuring Shape Memory Effect. Biomed. Eng. Biomed. Tech. 2013, 58. [Google Scholar] [CrossRef]
- Röthemeyer, F.; Sommer, F. Kautschuktechnologie: Werkstoffe—Verarbeitung—Produkte; Carl Hanser Verlag GmbH & Co KG: Munich, Germany, 2013. [Google Scholar]
- Bargel, G.S.H. Werkstoffkunde; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Eyerer, P. Einführung in Polymer Engineering. In Die Kunststoffe und Ihre Eigenschaften; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–449. [Google Scholar]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Lin, X.; Bai, Y.; Zhou, H.; Yang, L. Mechano-Active Biomaterials for Tissue Repair and Regeneration. J. Mater. Sci. Technol. 2020, 59, 227–233. [Google Scholar] [CrossRef]
- Kazanskii, K.S.; Dubrovskii, S.A. Chemistry and physics of “agricultural” hydrogels. In Polyelectrolytes Hydrogels Chromatographic Materials; Spinger: Berlin/Heidelberg, Germany, 1992; pp. 97–133. [Google Scholar]
- Seldon, H.L.; Dahm, M.C.; Clark, G.M.; Crowe, S. Silastic with Polyacrylic Acid Filler: Swelling Properties, Biocompatibility and Potential Use in Cochlear Implants. Biomaterials 1994, 15, 1161–1169. [Google Scholar] [CrossRef]
- Abbasi, F.; Mirzadeh, H.; Simjoo, M. Hydrophilic Interpenetrating Polymer Networks of Poly(Dimethyl Siloxane) (PDMS) as Biomaterial for Cochlear Implants. J. Biomater. Sci. Polym. Ed. 2006, 17, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Avantor Sciences Datasheet-Biomaterials Implant Line Liquid Silicone Rubber-Nusil Med 4850. Available online: https://www.avantorsciences.com/assetsvc/asset/en_US/id/29019577/contents/en_us_tds_nusimed-4850.pdf (accessed on 21 April 2022).
- Wacker Chemie AG Datasheet-SILPURAN® 2430 A/B Room Temperature Curing Silicone Rubber (RTV-2). 2021.
- The Goodfellow Group Polyacrylamide/Acrylate Material Information AC33-GL-000110. Available online: https://www.goodfellow.com/de/de/displayitemdetails/p/ac33-gl-000110/polyacrylamide-acrylate-granule (accessed on 21 April 2022).
- Stieghorst, J.; Tegtmeier, K.; Aliuos, P.; Zernetsch, H.; Glasmacher, B.; Doll, T. Self-Bending Hydrogel Actuation for Electrode Shafts in Cochlear Implants. Phys. Status Solidi 2014, 211, 1455–1461. [Google Scholar] [CrossRef]
- Stieghorst, J.; Doll, T. Dispersed Hydrogel Actuator for Modiolar Hugging Cochlear Implant Electrode Arrays. IEEE Trans. Biomed. Eng. 2016, 63, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Stieghorst, J.; Tran, B.N.; Hadeler, S.; Beckmann, D.; Doll, T. Hydrogel-Based Actuation for Modiolar Hugging Cochlear Implant Electrode Arrays. Proc. Eng. 2016, 168, 1529–1532. [Google Scholar] [CrossRef]
- Walling, N.; Philamore, H.; Matsuno, F. A Soft Bimorph Actuator Using Silicone-Encapsulated Hydrogels. In Robosoft 2019; Late Breaking Result: Seoul, Korea, 2019. [Google Scholar] [CrossRef]
- Anniko, M.; Wróblewski, R. Ionic Environment of Cochlear Hair Cells. Hear. Res. 1986, 22, 279–293. [Google Scholar] [CrossRef]
- Kara, A.; Salt, A.N.; Thalmann, R. Perilymph Composition in Scala Tympani of the Cochlea: Influence of Cerebrospinal Fluid. Hear. Res. 1989, 42, 265–271. [Google Scholar] [CrossRef]
- Ferenc, H.; Tasaki, I.; Basser, P.J. Osmotic Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions. Biomacromolecules 2000, 1, 84–90. [Google Scholar]
- Bokobza, L. Elastomeric Composites. I. Silicone Composites. J. Appl. Polym. Sci. 2004, 93, 2095–2104. [Google Scholar] [CrossRef]
- Hemingway, M.G.; Gupta, R.B.; Elton, D.J. Hydrogel Nanopowder Production by Inverse-Miniemulsion Polymerization and Supercritical Drying. Ind. Eng. Chem. Res. 2010, 49, 10094–10099. [Google Scholar] [CrossRef]
- Yanagioka, M.; Frank, C.W. Effect of Particle Distribution on Morphological and Mechanical Properties of Filled Hydrogel Composites. Macromolecules 2008, 41, 5441–5450. [Google Scholar] [CrossRef]
- Andreopoulos, A.; Diakoulaki, D. The Diffuse Properties of Crosslinked Polyethylene. Mater. Sci. Monogr. 1984, 31, 569–574. [Google Scholar]
- Biedron, S.; Prescher, A.; Ilgner, J.; Westhofen, M. The Internal Dimensions of the Cochlear Scalae with Special Reference to Cochlear Electrode Insertion Trauma. Otol. Neurotol. 2010, 31, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Z.; Xian, X.; Huang, Q.; Chen, Q.; Hong, P.; Li, Y.; Shi, A. Biocompatible Double Network Poly(Acrylamide-Co-Acrylic Acid)–Al3+/Poly(Vinyl Alcohol)/Graphene Oxide Nanocomposite Hydrogels with Excellent Mechanical Properties, Self-Recovery and Self-Healing Ability. New J. Chem. 2020, 44, 10390–10403. [Google Scholar] [CrossRef]
Silpuran 2430 | Nusil Med 4850 | |
---|---|---|
Curing | 10 min at 135 °C | 5 min at 150 °C |
Biocompatibility | Restricted (<28 days) | Unrestricted |
Polymerization | Room temperature polymerized (RTV 2) | Liquid Silicone Rubber (LSR) |
Hardness Shore | 20 | 50 |
Tensile strength | 6 MPa | 10.17 MPa |
Elongation at rupture | 540% | 675% |
PAMAA Particle Size | Layer Height | Material Combinations | |
---|---|---|---|
Samples of design A | Silpuran 2430 + PAMAA| | Nusil Med 4850 + PAMAA | |
<20 µm | 20 wt%, 25 wt%, 30 wt% n = 6 samples each | ||
20–50 µm | |||
50–100 µm | |||
Samples of design B | Nusil Med 4850 + PAMAA | ||
20–50 µm | 20 wt%|n = 6 samples | ||
50–100 µm | 20 wt%, 25 wt%, 30 wt%|n = 6 samples each | ||
Samples of design C | Nusil Med 4850 + PAMAA | ||
20–50 µm | Basal 0.65 mm Apical 0.30 mm | 20 wt%|n = 3 samples |
50–100 (µm) | 20–50 (µm) | 0–20 (µm) | |
---|---|---|---|
Median (x50) | 77.39 | 48.00 | 28.34 |
Standard deviation | 6.38 | 1.01 | 1.26 |
Hydrogel Content (wt%) | Grain-Size Fraction (µm) | Individual Radii for the Samples Prepared (S1–S6) (mm) | Mean Radius (mm) | ||
---|---|---|---|---|---|
Design B | |||||
20 | 48 | S1—17.4 | S2—7.7 | S3—7.5 | 10.9 |
S4—8.7 | S5—9.8 | S6—14.4 | |||
20 | 77 | S1—15.9 | S2—12.0 | S3—12.6 | 12.2 |
S4—5.6 | S5—12.3 | S6—14.8 | |||
25 | 77 | S1—14.4 | S2—21.2 | S3—16.2 | 16.6 |
S4—16.5 | S5—16.2 | S6—15.2 | |||
30 | 77 | S1—13.7 | S2—17.5 | S3—13.3 | 14.8 |
S4—14.0 | S5—11.4 | S6—18.8 | |||
Design C | |||||
20 | 48 | S1 | basal section—3.9 | 3.6 | |
middle section—3.9 | |||||
apical section—3.1 | |||||
20 | 48 | S2 | basal section—2.5 | 1.9 | |
middle section—1.25 | |||||
apical section—1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz-Bayraktar, S.; Foremny, K.; Kreienmeyer, M.; Warnecke, A.; Doll, T. Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants. Polymers 2022, 14, 1766. https://doi.org/10.3390/polym14091766
Yilmaz-Bayraktar S, Foremny K, Kreienmeyer M, Warnecke A, Doll T. Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants. Polymers. 2022; 14(9):1766. https://doi.org/10.3390/polym14091766
Chicago/Turabian StyleYilmaz-Bayraktar, Suheda, Katharina Foremny, Michaela Kreienmeyer, Athanasia Warnecke, and Theodor Doll. 2022. "Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants" Polymers 14, no. 9: 1766. https://doi.org/10.3390/polym14091766
APA StyleYilmaz-Bayraktar, S., Foremny, K., Kreienmeyer, M., Warnecke, A., & Doll, T. (2022). Medical-Grade Silicone Rubber–Hydrogel-Composites for Modiolar Hugging Cochlear Implants. Polymers, 14(9), 1766. https://doi.org/10.3390/polym14091766