Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SiO2/P(MBAAm-co-AM) Polymeric Nanoparticles
2.3. Characterization
2.4. Microtubule Flow Experiment
2.5. Profile Control Experiment
2.6. Microscopic Flooding Experiment
3. Results and Discussion
3.1. Characterization of SiO2/P(MBAAm-co-AM) Polymeric Nanoparticles
3.2. Microtubule Flow Characteristics
3.3. Profile Control Characteristics
3.4. Microscopic Flooding Characteristics
4. Conclusions
- (1)
- The flow of SiO2/P(MBAAm-co-AM) polymeric nanoparticle solutions show obvious nonlinear characteristic at a low-pressure gradient in a single channel. The smaller the channel size is and the larger the mass concentration is, the stronger the nonlinearity of the fluid flow is. The fluid flow has a prominent scale effect at a low-pressure gradient, and there should be an optimal injection mass concentration of the SiO2/P(MBAAm-co-AM) polymeric nanoparticles for the channels with different sizes.
- (2)
- After entering the reservoir, SiO2/P(MBAAm-co-AM) polymeric nanoparticles block the main flow channels, reduce the permeability of the water phase, and form effective plugging at different permeability areas. SiO2/P(MBAAm-co-AM) polymeric nanoparticles first accumulate and block the large channel, and then reaccumulate in the next large channel after breaking through the pore throat to fulfill the step-by-step profile control. The swelling time has a large influence on the profile control of the SiO2/P(MBAAm-co-AM) polymeric nanoparticles. When the swelling time increases from 24 to 120 h, the maximum change rate of the permeability induced by the profile control increases from 79.35% to 93.00%.
- (3)
- The SiO2/P(MBAAm-co-AM) polymeric nanoparticles gather together with a dense network structure in the fracture to form the retention, flow slowly with the form of a loose network in the large channel, and either pass through the small channel by elastic deformation or are directly detained in the small channel. Therefore, the SiO2/P(MBAAm-co-AM) polymeric nanoparticles can block dynamically and alternatively the pore throats of different sizes to regulate the fluid flow between the small and large channels. The SiO2/P(MBAAm-co-AM) polymeric nanoparticles can significantly give rise to the fluid diversion, effectively improve the sweep efficiency, and recover more residual oil in the un-swept small channels. SiO2/P(MBAAm-co-AM) polymeric nanoparticles can achieve an enhanced oil recovery of 20.71%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wu, F.; Li, X.; Tan, X. Experimental study on waterflood development in large–scale karst structures. J. Petrol. Sci. Eng. 2019, 175, 193–202. [Google Scholar] [CrossRef]
- Fan, T.; Song, X.; Wu, S.; Li, Q.; Wang, B.; Li, X.; Li, H.; Liu, H. A mathematical model and numerical simulation of waterflood induced dynamic fractures of low permeability reservoirs. Petrol. Explor. Dev. 2015, 42, 541–547. [Google Scholar] [CrossRef]
- Song, H.; Cao, Y.; Yu, M.; Wang, Y.; Killough, J.; Leung, J. Impact of permeability heterogeneity on production characteristics in water-bearing tight gas reservoirs with threshold pressure gradient. J. Nat. Gas Sci. Eng. 2015, 22, 172–181. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, S.; Zhang, K.; Ayala, L.F. Investigation on the transient pressure response of water injector coupling the dynamic flow behaviors in the wellbore, waterflood-induced fracture and reservoir: Semi-analytical modeling and a field case. Int. J. Heat. Mass. Tran. 2019, 130, 668–679. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, X.; Liu, J. Comparative study of feedback control policies in water flooding production. J. Nat. Gas. Sci. Eng. 2015, 27, 1348–1356. [Google Scholar] [CrossRef]
- Al-Saedi, H.N.; Flori, R.E.; Brady, P.V. Effect of divalent cations in formation water on wettability alteration during low salinity water flooding in sandstone reservoirs: Oil recovery analyses, surface reactivity tests, contact angle, and spontaneous imbibition experiments. J. Mol. Liq. 2019, 275, 163–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, B.; Lu, L.; Yue, Q.; Wang, Q.; Jia, Y. Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process. J. Petrol. Sci. Eng. 2017, 149, 193–202. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, X. Enhancing heavy-oil recovery by using middle carbon alcohol-enhanced hot polymer flooding. J. Petrol. Sci. Eng. 2010, 74, 14–19. [Google Scholar] [CrossRef]
- Riahinezhad, M.; Romero-Zerón, L.; McManus, N.; Penlidis, A. Evaluating the performance of tailor-made water-soluble copolymers for enhanced oil recovery polymer flooding applications. Fuel 2017, 203, 269–278. [Google Scholar] [CrossRef]
- Sang, Q.; Li, Y.; Yu, L.; Li, Z.; Dong, M. Enhanced oil recovery by branched-preformed particle gel injection in parallel-sandpack models. Fuel 2014, 136, 295–306. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. NanoBiotechnol. 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Ehtesabi, H.; Ahadian, M.M.; Taghikhani, V.; Ghazanfari, M.H. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids. Energ. Fuel. 2014, 28, 423–430. [Google Scholar] [CrossRef]
- Luo, M.; Jia, X.; Si, X.; Luo, S.; Zhan, Y. A novel polymer encapsulated silica nanoparticles for water control in development of fossil hydrogen energy−tight carbonate oil reservoir by acid fracturing. Int. J. Hydrogen Energy 2021, 46, 31191–31201. [Google Scholar] [CrossRef]
- Santamaria, O.; Lopera, S.H.; Riazi, M.; Minale, M.; Cortes, F.B.; Franco, C.A. Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO2 nanoparticles. J. Petrol. Sci. Eng. 2021, 198, 108135. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, M.; Li, H.; Dong, Z.; Zhang, J.; Yang, Z. Plugging property and displacement characters of a novel high-temperature resistant polymer nanoparticle. Petrol. Sci. 2022, 19, 387–389. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S. Nanofluids of silica nanoparticles in low salinity water with surfactant and polymer (SMART LowSal) for enhanced oil recovery. J. Mol. Liq. 2021, 342, 117388. [Google Scholar] [CrossRef]
- Gong, Y.; Li, L.; Huang, W.; Zou, J.; Zhong, X.; Wang, L.; Kang, D.; Zhang, K.; Zhang, Z. A study of alkali-silica nanoparticle-polymer (ANP) flooding for enhancing heavy oil recovery. J. Petrol. Sci. Eng. 2022, 213, 110465. [Google Scholar] [CrossRef]
- Hamdi, S.S.; Al-Kayiem, H.H.; Alsabah, M.S.; Muhsan, A.S. A comparative study of dispersed and grafted nanofluids of graphene nanoplatelets with natural polymer in high salinity brine for enhanced oil recovery. J. Petrol. Sci. Eng. 2022, 210, 110004. [Google Scholar] [CrossRef]
- Druetta, P.; Picchioni, F. Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery. J. Petrol. Sci. Eng. 2019, 177, 479–495. [Google Scholar] [CrossRef]
- Bera, A.; Shah, S.; Shah, M.; Agarwal, J.; Vij, R.K. Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloid Surf. A 2020, 598, 124833. [Google Scholar] [CrossRef]
- Pal, N.; Mandal, A. Enhanced oil recovery performance of gemini surfactant-stabilized nanoemulsions functionalized with partially hydrolyzed polymer/silica nanoparticles. Chem. Eng. Sci. 2020, 226, 115887. [Google Scholar] [CrossRef]
- Izadi, N.; Koochi, M.M.; Amrollahi, A.; Pourkhalil, M. Investigation of functionalized polyelectrolyte polymer-coated Fe3O4 nanoparticles stabilized in high salinity brine at high temperatures as an EOR agent. J. Petrol. Sci. Eng. 2019, 178, 1079–1091. [Google Scholar] [CrossRef]
- Khalil, M.; Aulia, G.; Budianto, E.; Jan, B.M.; Habib, S.H.; Amir, Z.; Patah, M.F. Surface-functionalized superparamagnetic nanoparticles (SPNs) for enhanced oil recovery: Effects of surface modifiers and their architectures. ACS Omega 2019, 4, 21477–21486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bila, A.; Stensen, J.Å.; Torsæter, O. Experimental investigation of polymer-coated silica nanoparticles for enhanced oil recovery. Nanomaterials 2019, 9, 822. [Google Scholar] [CrossRef] [Green Version]
- Lai, N.; Tang, L.; Jia, N.; Qiao, D.; Chen, J.; Wang, Y.; Zhao, X. Feasibility study of applying modified nano-SiO2 hyperbranched copolymers for enhanced oil recovery in low-mid permeability reservoirs. Polymers 2019, 11, 1483. [Google Scholar] [CrossRef] [Green Version]
- Behzadi, A.; Mohammadi, A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J. Nanopart. Res. 2016, 266, 1–19. [Google Scholar] [CrossRef]
- Long, Y.; Huang, X.; Gao, Y.; Chen, L.; Song, F.; Zhang, H. Swelling mechanism of core−shell polymeric nanoparticles and their application in enhanced oil recovery for low-permeability reservoirs. Energy Fuels 2019, 33, 3077–3088. [Google Scholar] [CrossRef]
- Choi, S.K.; Son, H.A.; Kim, H.T.; Kim, J.W. Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles. Energy Fuels 2017, 31, 7777–7782. [Google Scholar] [CrossRef]
- Yue, M.; Zhu, W.; Han, H.; Song, H.; Long, Y.; Lou, Y. Experimental research on remaining oil distribution and recovery performances after nano-micron polymer particles injection by direct visualization. Fuel 2018, 212, 506–514. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Li, L.; Hao, Y.; Zhan, S.; Wang, W.; Wu, Z.; Zhang, W. Experimental study on microscopic mechanisms and displacement efficiency of N2 flooding in deep-buried clastic reservoirs. J. Petrol. Sci. Eng. 2022, 208, 109789. [Google Scholar] [CrossRef]
- Jia, C.; Pang, X.; Song, Y. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-sealing and intermolecular forces. Petrol. Explor. Dev. 2021, 48, 507–526. [Google Scholar] [CrossRef]
- Afekare, D.; Gupta, I.; Rao, D. Nanoscale investigation of silicon dioxide nanofluids and implications for enhanced oil recovery—An atomic force microscope study. J. Petrol. Sci. Eng. 2020, 191, 107165. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, C.; Ma, Y.; Fu, M. Distribution of liquid-liquid two-phase flow and droplet dynamics in asymmetric parallel microchannels. Chem. Eng. J. 2022, 441, 136027. [Google Scholar] [CrossRef]
- Dehkordi, R.B.; Toghraie, D.; Hashemian, M.; Aghadavoudi, F.; Akbari, M. The effects of external force and electrical field on the agglomeration of Fe3O4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation. Int. Commun. Heat. Mass. 2021, 122, 105182. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Zhao, L.; Peng, H. Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs. Int. J. Heat. Mass. Tran. 2019, 143, 118482. [Google Scholar] [CrossRef]
- De, S.; Krishnan, P.; Schaaf, J.; Kuipers, J.; Peters, E.; Padding, J. iscoelastic effects on residual oil distribution in flows through pillared microchannels. J. Colloid. Interf. Sci. 2018, 510, 262–271. [Google Scholar] [CrossRef]
No. | Swelled for 24 h | Swelled for 120 h | ||||
---|---|---|---|---|---|---|
Initial Permeability (10−3 μm2) | Final Permeability (10−3 μm2) | Relative Change Rate (%) | Initial Permeability (10−3 μm2) | Final Permeability (10−3 μm2) | Relative Change Rate (%) | |
L12 | 847.85 | 644.44 | 23.99 | 572.99 | 438.31 | 23.51 |
L23 | 132.75 | 75.29 | 43.28 | 193.92 | 106.78 | 44.94 |
L34 | 416.72 | 217.41 | 47.83 | 476.65 | 73.89 | 84.50 |
L45 | 540.88 | 111.68 | 79.35 | 2732.27 | 191.29 | 93.00 |
L5o | 112.01 | 73.51 | 34.37 | 257.37 | 103.51 | 59.78 |
Model Area | Residual Oil Saturation (%) | Enhanced Oil Recovery (%) | ||
---|---|---|---|---|
Waterflood | Polymeric Nanoparticle Flooding | Extended Waterflood | Polymeric Nanoparticles Flooding and Extended Waterflood | |
Main channel | 40.32 | 35.43 | 21.87 | 18.45 |
Transition | 49.83 | 38.51 | 28.97 | 20.86 |
Boundary | 59.24 | 49.64 | 36.44 | 22.80 |
Whole model | 49.80 | 41.19 | 29.09 | 20.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wang, Y.; Long, Y.; Liu, J.; Zheng, H.; Nie, W.; Han, H. Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media. Polymers 2022, 14, 1803. https://doi.org/10.3390/polym14091803
Huang X, Wang Y, Long Y, Liu J, Zheng H, Nie W, Han H. Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media. Polymers. 2022; 14(9):1803. https://doi.org/10.3390/polym14091803
Chicago/Turabian StyleHuang, Xiaohe, Yuyi Wang, Yunqian Long, Jing Liu, Han Zheng, Wen Nie, and Hongyan Han. 2022. "Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media" Polymers 14, no. 9: 1803. https://doi.org/10.3390/polym14091803
APA StyleHuang, X., Wang, Y., Long, Y., Liu, J., Zheng, H., Nie, W., & Han, H. (2022). Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media. Polymers, 14(9), 1803. https://doi.org/10.3390/polym14091803