Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry
Abstract
:1. Introduction
2. Theoretical Background
2.1. Optical Properties of Uniaxial Materials
2.2. Transmission and Reflection Coefficients
2.3. Cauchy Model of Dispersion
3. Materials and Methods
3.1. The Sample
3.2. Transmission Spectroscopy Setup
3.3. Polarizer Transmittance
3.4. Modeling and Fitting
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- -
- Adopting a non-lossy sample approximation allowed us to reduce the number of fitting parameters to three instead of six. This choice was motivated by the very small experimental values of (five to six orders of magnitude smaller than the values of ) as reported elsewhere [11]. With this approximation, and as explained in Appendix B, the transmittance expression is reduced to:
- -
- In a second step, three equidistant data points were chosen from the experimental transmission spectrum then substituted one by one in Equation (A1) to obtain three values: ,, and , which ultimately led to the below system of linear equations:
- -
- Solving the last system analytically gave the initial set of guess values .
- -
- Using the guess values of step 1, a theoretical guess function based on Cauchy model of dispersion was constructed
- -
- A Mathematica script employing the FindRoot built-in function was implemented and used to numerically solve Equation (18) for a lossy material.
- -
- The script combines the guessed values previously obtained with the experimental spectral measurements for each value of , which allowed the calculation of over the entire spectral range.
Appendix B
Appendix C
References
- Wu, S.; Lackner, A.M. Mylar-film-compensated π and parallel-aligned liquid crystal cells for direct-view and projection displays. Appl. Phys. Lett. 1994, 64, 2047–2049. [Google Scholar] [CrossRef]
- Sanaâ, F.; Palierne, J.F.; Gharbsia, M. Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film. Opt. Mater. 2016, 57, 193–201. [Google Scholar] [CrossRef]
- DeMeuse, M.T. (Ed.) Other polymers used for biaxial films. In Biaxial Stretching of Film: Principles and Applications; Woodhead Publishing Limited: Sawston, UK, 2011; pp. 47–49. [Google Scholar]
- Barham, P.J. Structure and morphology of oriented polymers. In Structure and Properties of Oriented Polymers; Ward, I.M., Ed.; Springer: Dordrecht, The Netherlands, 1997; pp. 142–180. [Google Scholar] [CrossRef]
- Chipman, R.A. Polarimetry. In Handbook of Optics—Volume II, 2nd ed.; McGraw-Hill: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Chenault, D.B.; Chipman, R.A. Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. Appl. Opt. 1993, 32, 3513–3519. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, E.V.; Smith, D.R. Optical Constants of Far Infrared Materials I: Analysis of Channeled Spectra and Application to Mylar. Appl. Opt. 1971, 10, 577. [Google Scholar] [CrossRef]
- Sergides, C.A.; Chughtai, A.R.; Smith, D.M. Determination of Optical Constants of Polymer Films Using a Fourier Transform Infrared Reflection Method; Polyethylene Terephthalate (PET). Appl. Spectrosc. 1987, 41, 154–157. [Google Scholar] [CrossRef]
- Ouchi, I.; Nakai, I.; Kamada, M. Anisotropic absorption spectra of polyester films in the ultraviolet and vacuum ultraviolet regions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 199, 270–274. [Google Scholar] [CrossRef]
- Seres, Z.; Galonsky, A.; Ieki, K.; Kruse, J.J.; Zecher, P.D. Optical transmission of Mylar and Teflon films. Opt. Eng. 1994, 33, 3031. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, J.; Li, X.; Zhao, J.; Liu, L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337. [Google Scholar] [CrossRef]
- Losurdo, M.; Bruno, G.; Irene, E.A. Anisotropy of optical properties of conjugated polymer thin films by spectroscopic ellipsometry. J. Appl. Phys. 2003, 94, 4923. [Google Scholar] [CrossRef]
- Kostruba, A.; Stetsyshyn, Y.; Vlokh, R. Method for determination of the parameters of transparent ultrathin films deposited on transparent substrates under conditions of low optical contrast. Appl. Opt. 2015, 54, 6208. [Google Scholar] [CrossRef]
- Kaino, T. Optical Absorption of Polymers. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–14. [Google Scholar] [CrossRef]
- Kasap, S.O.; Tan, W.C.; Singh, J.; Ray, A.K. Fundamental Optical Properties of Materials. In Optical Properties of Materials and Their Applications; Wiley: Hoboken, NJ, USA, 2019; pp. 1–36. [Google Scholar] [CrossRef]
- Stenzel, O. (Ed.) The Kramers-Kronig Relations. In The Physics of Thin Film Optical Spectra, 2nd ed.; Springer: Cham, Switzerland, 2016; pp. 85–93. [Google Scholar] [CrossRef]
- Lucarini, V.; Saarinen, J.J.; Peiponen, K.-E.; Vartiainen, E.M. Kramers-Kronig Relations in Optical Materials Research, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 110. [Google Scholar] [CrossRef] [Green Version]
- Hilfiker, J.N.; Tiwald, T. Dielectric Function Modeling. In Spectroscopic Ellipsometry for Photovoltaics: Fundamental Principles and Solar Cell Characterization; Springer: Cham, Switzerland, 2018; Volume 1, pp. 115–153. [Google Scholar] [CrossRef]
- Roessler, D.M. Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 1965, 16, 1119–1123. [Google Scholar] [CrossRef]
- Peiponen, K.-E.; Vartiainen, E.M. Kramers-Kronig relations in optical data inversion. Phys. Rev. B 1991, 44, 8301–8303. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.F.; Williams, M.Z.; Budde, B.A. Multiply subtractive Kramers–Kronig analysis of optical data. Appl. Opt. 1998, 37, 2660. [Google Scholar] [CrossRef] [PubMed]
- Chipman, R.A.; Lam, W.-S.T.; Young, G. (Eds.) Fresnel Equations in Polarized Light and Optical Systems, 1st ed.; CRC Press—Taylor & Francis Group: New York, NY, USA, 2018; pp. 295–321. [Google Scholar]
- Stenzel, O. (Ed.) Planar Interfaces. In The Physics of Thin Film Optical Spectra, 2nd ed.; Springer: Cham, Switzerland, 2016; pp. 97–129. [Google Scholar] [CrossRef]
- Scharf, T. (Ed.) Description of Light Propagation with Rays. In Polarized Light in Liquid Crystals and Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 37–69. [Google Scholar]
- Chipman, R.A.; Lam, W.-S.T.; Young, G. Uniaxial Materials and Components. Polarized Light and Optical Systems; CRC Press—Taylor & Francis Group: Abingdon, UK, 2018; pp. 741–784. [Google Scholar]
- Scharf, T. Electromagnetic Waves in Anisotropic Materials. In Polarized Light in Liquid Crystals and Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 19–36. [Google Scholar]
- Hecht, E. (Ed.) Polarization. In Optic; Pearson: Boston, MA, USA, 2017; pp. 325–379. [Google Scholar]
- van Horn, B.L.; Winter, H.H. Conoscopic Measurement of Birefringence and Orientation in Biaxially Stretched Polymer Films and Sheets. Macromolecules 2003, 36, 8513–8521. [Google Scholar] [CrossRef]
- Peatross, J.; Ware, M. (Eds.) Polarization of Light. In Physics of Light and Optics; Brigham Young University: Provo, UT, USA, 2015; pp. 143–168. [Google Scholar] [CrossRef]
- Scharf, T. Stratified Birefringent Media. In Polarized Light in Liquid Crystals and Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 70–92. [Google Scholar]
- Scharf, T. Organic Optical Materials. In Polarized Light in Liquid Crystals and Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 103–141. [Google Scholar]
- Jenkins, F.A.; White, H.E. (Eds.) Absorption and Scattering. In Fundamentals of Optics, 4th ed.; McGraw-Hill: New York, NY, USA, 2001; pp. 457–473. [Google Scholar]
- Nichelatti, E. Complex refractive index of a slab from reflectance and transmittance: Analytical solution. J. Opt. A Pure Appl. Opt. 2002, 4, 306. [Google Scholar] [CrossRef]
- Stenzel, O. (Ed.) Thick Slabs and Thin Films. In The Physics of Thin Film Optical Spectra, 2nd ed.; Springer: Cham, Switzerland, 2016; pp. 131–161. [Google Scholar] [CrossRef]
- Jafar, M. Comprehensive formulations for the total normal-incidence optical reflectance and transmittance of thin films laid on thick substrates. Eur. Int. J. Sci. Technol. 2013, 2, 274. [Google Scholar]
- Jenkins, F.A.; White, H.E. Dispersion. In Fundamentals of Optics; McGraw-Hill: New York, NY, USA, 2001; pp. 474–496. [Google Scholar]
- What is Cauchy Dispersion Model? Available online: https://www.horiba.com/int/spectroscopic-ellipsometry-cauchy-dispersion-module/ (accessed on 27 March 2022).
- Fochs, P.D. A Method of Determining Concurrently the Thickness and Refractive Index of a Thin Film or Lamina. J. Opt. Soc. Am. 1950, 40, 623. [Google Scholar] [CrossRef]
- Jeppesen, M.A.; Taylor, A.M. Thickness and Refractive Index Measurement of a Lamina with a Michelson Interferometer. J. Opt. Soc. Am. 1966, 56, 451. [Google Scholar] [CrossRef]
- Avogadro: An Open-Source Molecular Builder and Visualization Tool. Available online: http://avogadro.cc/ (accessed on 8 April 2022).
- Lin, Y.; Bilotti, E.; Bastiaansen, C.W.M.; Peijs, T. Transparent semi-crystalline polymeric materials and their nanocomposites: A review. Polym. Eng. Sci. 2020, 60, 2351–2376. [Google Scholar] [CrossRef]
- McClure, D.J. Polyester (PET) film as a substrate: A tutorial. Bulletin 2007, 3, 1629–1688. [Google Scholar]
- Yang, S.M.; Hong, S.; Kim, S.Y. Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 152–160. [Google Scholar] [CrossRef]
- Edmund Optics Worldwide XP38 LINEAR POLARIZER. Available online: https://www.edmundoptics.com/globalassets/documents/xp38-linear-polarizer-a4-58963.pdf (accessed on 27 March 2022).
- Perkin Elmer Polarizer/Depolarizer Options for the LAMBDA 650, 750, 850, 950 and 1050 UV/Vis. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/prd-006991A-04-LAMBDA650-1050PolarizerDepolarizerOptions.pdf (accessed on 27 March 2022).
- Perkin Elmer PerkinElmer Lambda 950 Manuals. Available online: https://www.manualslib.com/products/Perkinelmer-Lambda-950-10950142.html (accessed on 27 March 2022).
- Shurcliff, W.A. (Ed.) Polarizers: Classes and Performance Parameters. In Polarized Light: Production and Use; Harvard University Press: Cambridge, MA, USA, 1962; pp. 32–42. [Google Scholar]
- Jones, R.C. A New Calculus for the Treatment of Optical Systems IV. J. Opt. Soc. Am. 1942, 32, 486. [Google Scholar] [CrossRef]
- Mathematica; Wolfram Research, Inc.: Champaign, IL, USA, 2017.
- NonLinearModelFit. Available online: https://reference.wolfram.com/language/ref/NonlinearModelFit.html (accessed on 27 March 2022).
- Introduction to Constrained Optimization in the Wolfram Language. Available online: https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationIntroduction.html (accessed on 27 March 2022).
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Nonlinear Models. In Numerical Recipes in C—The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; pp. 683–688. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Variable Metric Methods in Multidimensions. In Numerical Recipes in C—The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1997; pp. 425–430. [Google Scholar]
- Sak-Bosnar, M.; Madunić-Čačić, D.; Sakač, N.; Samardžić, M.; Kurtanjek, Ž. Estimation and Optimization of Potentiometric Sensor Response Parameters from Surfactant Titration Data Using Microsoft Excel Solver and Mathematica. Sens. Lett. 2011, 9, 491–498. [Google Scholar] [CrossRef]
- Scripa, A.E.; Dimitriu, D.G.; Dorohoi, D.O. Linear birefringence of polymer foils determined by optical means. J. Mol. Struct. 2017, 1140, 67–70. [Google Scholar] [CrossRef]
- Cakmak, M.; White, J.L.; Spruiell, J.E. Optical properties of simultaneous biaxially stretched poly(ethylene terephthalate) films. Polym. Eng. Sci. 1989, 29, 1534–1543. [Google Scholar] [CrossRef]
- Type D and D1 300–1000 Gauge. Available online: https://www.cambslabels.co.uk/testsite2013/index_htm_files/Mylar_D.pdf (accessed on 27 March 2022).
- Mylar® A 190–500 µm. Available online: https://www.ukinsulations.co.uk/pdfs/Mylar_A_190_-_500mic.pdf (accessed on 27 March 2022).
- Giuffria, R. Microscopic studies of Mylar film and its low molecular weight extracts. J. Polym. Sci. 1961, 49, 427–436. [Google Scholar] [CrossRef]
- MYLAR® X6739 Product Description. Available online: https://usfilm.dupontteijinfilms.com/FilmEnterprise/Datasheet.asp?ID=883&Version=US (accessed on 27 March 2022).
- Mylar Optical Properties Transmission of Radiation. Available online: http://usa.dupontteijinfilms.com/wp-content/uploads/2017/01/Mylar_Optical_Properties.pdf (accessed on 27 March 2022).
Best Fit Parameters | ||||||
---|---|---|---|---|---|---|
1.52388 | 15,249.2 | 1.52556 × 109 | 1.322 × 10−8 | −2.152090 | 3.989 × 106 | |
1.56911 | 17,856.4 | 1.52566 × 109 | 9.832 × 10−7 | −0.088029 | 3.993 × 106 | |
Goodness of fit indicators | ||||||
RMSE | ||||||
5.13419× 10−5 | 0.999917 | 6.85588 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhlouka, Y.; Sanaâ, F.; Gharbia, M. Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry. Polymers 2022, 14, 1805. https://doi.org/10.3390/polym14091805
Makhlouka Y, Sanaâ F, Gharbia M. Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry. Polymers. 2022; 14(9):1805. https://doi.org/10.3390/polym14091805
Chicago/Turabian StyleMakhlouka, Yassine, Fadhel Sanaâ, and Mohamed Gharbia. 2022. "Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry" Polymers 14, no. 9: 1805. https://doi.org/10.3390/polym14091805
APA StyleMakhlouka, Y., Sanaâ, F., & Gharbia, M. (2022). Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry. Polymers, 14(9), 1805. https://doi.org/10.3390/polym14091805