Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of HA Extract
2.2. Preparation of APH Film
2.3. Film Morphology and Texture
2.4. Structural Characterization
2.5. Fourier Transforms Infrared (FTIR) Spectroscopy
2.6. Film Color and Light Transmission
2.7. Antimicrobial Study
2.8. Physical Properties of the Films
2.9. In Vitro Cytotoxicity Studies
2.10. Statistical Analysis
3. Results
3.1. Film Morphology
3.2. Structural Characterization
3.3. Fourier Transforms Infrared (FTIR) Spectroscopy
3.4. Film Color and Light Transmission
3.5. Antimicrobial Activity of the Synthesized Wound Healing Material
3.6. Physical Properties of the Films
3.7. Anticancer Activity of Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail, N.A.; Amin, K.A.M.; Majid, F.A.A.; Razali, M.H. Gellan Gum Incorporating Titanium Dioxide Nanoparticles Biofilm as Wound Dressing: Physicochemical, Mechanical, Antibacterial Properties and Wound Healing Studies. Mater. Sci. Eng. C 2019, 103, 109770. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.L.; Júnior, A.R.C.; de Macedo, G.H.R.V.; Chagas, V.L.; Silva, L.D.S.; Cutrim, B.d.S.; Santos, D.M.; Soares, B.L.L.; Zagmignan, A.; de Miranda, R.d.C.M.; et al. Polysaccharide-Based Formulations for Healing of Skin-Related Wound Infections: Lessons from Animal Models and Clinical Trials. Biomolecules 2020, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound Dressing Based on Electrospun PVA/Chitosan/Starch Nanofibrous Mats: Fabrication, Antibacterial and Cytocompatibility Evaluation and in Vitro Healing Assay. Int. J. Biol. Macromol. 2019, 122, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Mattia, G.; Puglisi, R.; Ascione, B.; Malorni, W.; Carè, A.; Matarrese, P. Cell Death-Based Treatments of Melanoma:Conventional Treatments and New Therapeutic Strategies. Cell Death Dis. 2018, 9, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.H.; Mir, M.; Qian, L.; Baloch, M.; Ali Khan, M.F.; Rehman, A.; Ngowi, E.E.; Wu, D.-D.; Ji, X.-Y. Skin Cancer Biology and Barriers to Treatment: Recent Applications of Polymeric Micro/Nanostructures. J. Adv. Res. 2022, 36, 223–247. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-H.; Chang, M.-C.; Tsai, K.-S.; Hung, M.-C.; Chen, H.-L.; Hung, S.-C. Mesenchymal Stem Cells Promote Growth and Angiogenesis of Tumors in Mice. Oncogene 2013, 32, 4343–4354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In Vitro Antioxidant Activity, Total Phenolic and Flavonoid Contents of Ethanol Extract of Stem and Leaf of Grewia Carpinifolia. Beni Suef Univ. J. Basic Appl. Sci. 2017, 6, 10–14. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Bakri, Y.; Dakka, N. Les Huiles Essentielles Comme Agents Anticancéreux: Actualité Sur Le Mode d’action. Phytothérapie 2018, 16, 254–267. [Google Scholar] [CrossRef]
- Bouyahya, A.; Guaouguaou, F.-E.; Nadia Dakka, N.; Bakri, Y. Pharmacological Activities and Medicinal Properties of Endemic Moroccan Medicinal Plant Origanum Compactum (Benth) and Their Main Compounds. Asian Pac. J. Trop. Dis. 2017, 7, 628–640. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakri, Y.; Khay, E.O.; Edaoudi, F.; Talbaoui, A.; Et-Touys, A.; Abrini, J.; Dakka, N. Antibacterial, Antioxidant and Antitumor Properties of Moroccan Medicinal Plants: A Review. Asian Pac. J. Trop. Dis. 2017, 7, 57–64. [Google Scholar] [CrossRef]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selma, F.; Chahinez, T.; Salim, G.; Sakina, Z.; Guy, D. Antioxidant and Anti-Cancer Effects of Crude Extracts from (Vitis vinifera L.) Leaves on Melanoma Cells (SK-Mel and A375). Emir. J. Food Agric. 2021, 33, 691–698. [Google Scholar] [CrossRef]
- Malagurski, I.; Levic, S.; Nesic, A.; Mitric, M.; Pavlovic, V.; Dimitrijevic-Brankovic, S. Mineralized Agar-Based Nanocomposite Films: Potential Food Packaging Materials with Antimicrobial Properties. Carbohydr. Polym. 2017, 175, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Saurabh, C.K.; Tye, Y.Y.; Lai, T.K.; Easa, A.M.; Rosamah, E.; Fazita, M.R.N.; Syakir, M.I.; Adnan, A.S.; Fizree, H.M.; et al. Seaweed Based Sustainable Films and Composites for Food and Pharmaceutical Applications: A Review. Renew. Sustain. Energy Rev. 2017, 77, 353–362. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Ahmed, J.; Jacob, H. Preparation and Characterization of Agar-Based Nanocomposite Films Reinforced with Bimetallic (Ag-Cu) Alloy Nanoparticles. Carbohydr. Polym. 2017, 155, 382–390. [Google Scholar] [CrossRef]
- Dash, K.K.; Ali, N.A.; Das, D.; Mohanta, D. Thorough Evaluation of Sweet Potato Starch and Lemon-Waste Pectin Based-Edible Films with Nano-Titania Inclusions for Food Packaging Applications. Int. J. Biol. Macromol. 2019, 139, 449–458. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Du, W.X.; de Jesús Avena-Bustillos, R.; Soares, N.D.F.F.; McHugh, T.H. Edible Films from Pectin: Physical-Mechanical and Antimicrobial Properties-A Review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Fabrication of Pectin/Agar Blended Functional Film: Effect of Reinforcement of Melanin Nanoparticles and Grapefruit Seed Extract. Food Hydrocoll. 2021, 118, 106823. [Google Scholar] [CrossRef]
- Safna, M.I.; Visakh, U.V.; Gangadharan, A. Biological Activity of Hexane Extract of Hemigraphis Colorata, an Indigenous Wound Healing Plant. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 25, pp. 294–297. [Google Scholar]
- Reshmy, R.; Madhavan, A.; Arun, K.B.; Philip, E.; Sindhu, R.; Binod, P.; Puthiyamadam, A.; Awasthi, M.K.; Pandey, A. Chili Post-Harvest Residue-Derived Nanocellulose Composite as a Matrix for in Vitro Cell Culture and Hemigraphis Colorata Blended Nanocellulose Extends Antimicrobial Potential. Sustain. Chem. Pharm. 2022, 25, 100584. [Google Scholar] [CrossRef]
- Lin, L.; Peng, S.; Shi, C.; Li, C.; Hua, Z.; Cui, H. Preparation and Characterization of Cassava Starch/Sodium Carboxymethyl Cellulose Edible Film Incorporating Apple Polyphenols. Int. J. Biol. Macromol. 2022, 212, 155–164. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y. Combined Effects of Two Kinds of Essential Oils on Physical, Mechanical and Structural Properties of Chitosan Films. Food Hydrocoll. 2014, 36, 287–293. [Google Scholar] [CrossRef]
- Qu, L.; Chen, G.; Dong, S.; Huo, Y.; Yin, Z.; Li, S.; Chen, Y. Improved Mechanical and Antimicrobial Properties of Zein/Chitosan Films by Adding Highly Dispersed Nano-TiO2. Ind. Crops Prod. 2019, 130, 450–458. [Google Scholar] [CrossRef]
- Koshy, R.R.; Koshy, J.T.; Mary, S.K.; Sadanandan, S.; Jisha, S.; Pothan, L.A. Preparation of PH Sensitive Film Based on Starch/Carbon Nano Dots Incorporating Anthocyanin for Monitoring Spoilage of Pork. Food Control 2021, 126, 108039. [Google Scholar] [CrossRef]
- Xue Mei, L.; Mohammadi Nafchi, A.; Ghasemipour, F.; Mat Easa, A.; Jafarzadeh, S.; Al-Hassan, A.A. Characterization of PH Sensitive Sago Starch Films Enriched with Anthocyanin-Rich Torch Ginger Extract. Int. J. Biol. Macromol. 2020, 164, 4603–4612. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Joseph, M.M.; Aravind, S.R.; Unnikrishnan, B.S.; Sreelekha, T.T. The Inhibitory Effect of Anti- Tumor Polysaccharide from Punica Granatum on Metastasis. Int. J. Biol. Macromol. 2017, 103, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, G.; Yang, B.; Guo, G. Microstructure and Mechanical Properties of Soy Protein/Agar Blend Films: Effect of Composition and Processing Methods. J. Food Eng. 2011, 107, 21–26. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Hou, H. Effects of Hydrophobic Agents on the Physicochemical Properties of Edible Agar/Maltodextrin Films. Food Hydrocoll. 2019, 88, 283–290. [Google Scholar] [CrossRef]
- Guerrero, P.; Etxabide, A.; Leceta, I.; Peñalba, M.; de la Caba, K. Extraction of Agar from Gelidium Sesquipedale (Rodhopyta) and Surface Characterization of Agar Based Films. Carbohydr. Polym. 2014, 99, 491–498. [Google Scholar] [CrossRef]
- Monsoor, M.A.; Kalapathy, U.; Proctor, A. Determination of Polygalacturonic Acid Content in Pectin Extracts by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2001, 74, 233–238. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Antimicrobial and Physical-Mechanical Properties of Agar-Based Films Incorporated with Grapefruit Seed Extract. Carbohydr. Polym. 2014, 102, 708–716. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Fabrication of Carboxymethyl Cellulose/Agar-Based Functional Films Hybridized with Alizarin and Grapefruit Seed Extract. ACS Appl. Bio Mater. 2021, 4, 4470–4478. [Google Scholar] [CrossRef] [PubMed]
- Anitha, V.T.; Antonisamy, J.M.; Jeeva, S. Anti–Bacterial Studies on Hemigraphis Colorata (Blume) H.G. Hallier and Elephantopus scaber L. Asian Pac. J. Trop. Med. 2012, 5, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.-T.; Guerra Dias, A.R.; da Rosa Zavareze, E. PH-Sensitive Films Containing Anthocyanins Extracted from Black Bean Seed Coat and Red Cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Norajit, K.; Kim, K.M.; Ryu, G.H. Comparative Studies on the Characterization and Antioxidant Properties of Biodegradable Alginate Films Containing Ginseng Extract. J. Food Eng. 2010, 98, 377–384. [Google Scholar] [CrossRef]
- Muthukumar, T.; Prabu, P.; Ghosh, K.; Sastry, T.P. Fish Scale Collagen Sponge Incorporated with Macrotyloma Uniflorum Plant Extract as a Possible Wound/Burn Dressing Material. Colloids Surf. B Biointerfaces 2014, 113, 207–212. [Google Scholar] [CrossRef]
- Kumar, R.; Ghoshal, G.; Goyal, M. Effect of Basil Leaves Extract on Modified Moth Bean Starch Active Film for Eggplant Surface Coating. LWT 2021, 145, 111380. [Google Scholar] [CrossRef]
- Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Preparation of Pectin/Agar-Based Functional Films Integrated with Zinc Sulfide Nano Petals for Active Packaging Applications. Colloids Surf. B Biointerfaces 2021, 207, 111999. [Google Scholar] [CrossRef]
Film | L | a | b | ΔE | Opacity (A mm−1) |
---|---|---|---|---|---|
AP | 70.35 ± 0.94 c | 5.74 ± 0.15 a | 13.85 ± 0.16 a | 1.13 ± 0.85 a | 3.44 |
APH | 63.27 ± 0.65 b | 11.03 ± 0.89 c | 35.06 ± 0.64 d | 23.03 ± 0.55 c | 3.11 |
Film | Thickness (mm) | WCA (θ) | WVP (×10−9 g·m/m2·Pa·s) | Swelling Degree (%) | Tensile Strength (MPa) | Elongation of Break (%) |
---|---|---|---|---|---|---|
AP | 0.17 ± 0.01 a | 54.31° | 0.46 ± 0.2 a | 1.408 ± 0.46 a | 2.22 ± 0.2 a | 9.70± 2.1 ab |
APH | 0.19 ± 0.01 b | 35.89° | 0.49 ± 0.1 a | 1.786 ± 0.10 b | 4.32 ± 0.3 a | 10.9± 1.5 ab |
Concentration (µg/mL) | Percentage of Viability |
---|---|
6.25 | 92.22 ± 0.673 |
12.5 | 82.42 ± 0.555 |
25 | 68.21 ± 0.459 |
50 | 50.44 ± 0.339 |
100 | 38.01 ± 0.256 |
IC50 | 68.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshy, J.; Sangeetha, D. Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy. Polymers 2023, 15, 115. https://doi.org/10.3390/polym15010115
Koshy J, Sangeetha D. Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy. Polymers. 2023; 15(1):115. https://doi.org/10.3390/polym15010115
Chicago/Turabian StyleKoshy, Jijo, and Dhanaraj Sangeetha. 2023. "Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy" Polymers 15, no. 1: 115. https://doi.org/10.3390/polym15010115
APA StyleKoshy, J., & Sangeetha, D. (2023). Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy. Polymers, 15(1), 115. https://doi.org/10.3390/polym15010115