Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Hydrogel Preparation
2.4. Modified Glassy Carbon Electrode (GCE)
2.5. Electrochemical Measurement
2.6. Statistical Analysis
3. Results and Discussion
3.1. Silver-Embedded Conductive Hydrogel (Ag NP-CH)
3.2. Electrochemical Activity
3.3. Optimization of the Experimental Conditions
3.4. Electrochemical HQ Sensing
3.5. Selectivity, Reproducibility, and Stability of Ag NP-CH/GCE
3.6. Practical Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, M.-C.; Chang, B.-E.; Pan, Y.-H.; Lin, B.-R.; Lian, Y.-C.; Lee, M.-S.; Yeung, S.-Y.; Lin, L.-D.; Jeng, J.-H. Antiplatelet, antioxidative, and anti-inflammatory effects of hydroquinone. J. Cell. Physiol. 2019, 234, 18123–18130. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, Y.; Wang, Y.; Li, J.; Sun, Y.; Lin, Y.; Sun, W.; Luo, C. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol. 2018, 107, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q.; Guo, S.; Jia, P.; Shui, Y.; Yao, S.; Huang, C.; Zhang, M.; Wang, L. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sens. Actuators B Chem. 2018, 275, 415–421. [Google Scholar] [CrossRef]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-based electrochemical sensor for the determination of caffeic acid in aromatic herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, Y.; Liu, L.; Li, Y.; Wang, D.; Zhang, R.; Zhang, W.; Li, Y.; Ye, B.-C. Synthesis of hollow Mo2C/carbon spheres, and their application to simultaneous electrochemical detection of hydroquinone, catechol, and resorcinol. Microchim. Acta 2019, 186, 306. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhang, S.; Yang, L.; Liu, M.; Zhang, Y.; Yao, S. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 2017, 231, 677–685. [Google Scholar] [CrossRef]
- Cornwell, D.J.; Okesola, B.O.; Smith, D.K. Multidomain hybrid hydrogels: Spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators. Angew. Chem. Int. Ed. 2014, 53, 12461–12465. [Google Scholar] [CrossRef]
- Dhanjai; Sinha, A.; Kalambate, P.K.; Mugo, S.M.; Kamau, P.; Chen, J.; Jain, R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC Trends Anal. Chem. 2019, 118, 488–501. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J.; Wu, C.; Hu, X.; Lu, Y.; Wang, G.; Yu, F.; Zhang, X.; Wang, Y. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens. Bioelectron. 2020, 155, 112105. [Google Scholar] [CrossRef]
- Chang, G.; Dang, Q.; Liu, C.; Wang, X.; Song, H.; Gao, H.; Sun, H.; Zhang, B.; Cha, D. Carboxymethyl chitosan and carboxymethyl cellulose based self-healing hydrogel for accelerating diabetic wound healing. Carbohydr. Polym. 2022, 292, 119687. [Google Scholar] [CrossRef]
- Karimi, T.; Mottaghitalab, F.; Keshvari, H.; Farokhi, M. Carboxymethyl chitosan/sodium carboxymethyl cellulose/agarose hydrogel dressings containing silk fibroin/polydopamine nanoparticles for antibiotic delivery. J. Drug Deliv. Sci. Technol. 2023, 80, 104134. [Google Scholar] [CrossRef]
- Xu, T.; Li, J.; Zhang, S.; Jin, Y.; Wang, R. Integration of diagnosis and treatment in the detection and kill of S.aureus in the whole blood. Biosens. Bioelectron. 2019, 142, 111507. [Google Scholar] [CrossRef] [PubMed]
- El-Lateef, H.M.A.; Albokheet, W.A.; Gouda, M. Carboxymethyl cellulose/metal (Fe, Cu and Ni) nanocomposites as non-precious inhibitors of C-steel corrosion in HCl solutions: Synthesis, characterization, electrochemical and surface morphology studies. Cellulose 2020, 27, 8039–8057. [Google Scholar] [CrossRef]
- Xu, T.T.; Dai, H.Q.; Jin, Y.C. Electrochemical sensing of lead(II) by differential pulsevoltammetry using conductive polypyrrole nanoparticles. Microchim. Acta 2020, 187, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Chen, S.; Cheong, K.-L.; Teng, B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr. Polym. 2020, 246, 116617. [Google Scholar] [CrossRef]
- Qiao, Z.; Yang, X.; Yang, S.; Zhang, L.; Cao, B. 3D hierarchical MnO2 nanorod/welded Ag-nanowire-network composites for high-performance supercapacitor electrodes. Chem. Commun. 2016, 52, 7998–8001. [Google Scholar] [CrossRef]
- Huang, J.W.; Qian, X.R.; An, X.H.; Li, X.; Guan, J. Double in situ fabrication of PPy@MnMoO4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose 2020, 27, 5829–5843. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Pourbeyram, S. Zirconium immobilized on gold–mercaptopropionic acid self-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV. Biosens. Bioelectron. 2009, 24, 2199–2204. [Google Scholar] [CrossRef]
- Canevari, T.C.; Raymundo-Pereira, P.A.; Landers, R.; Machado, S.A.S. Direct synthesis of Ag nanoparticles incorporated on a mesoporous hybrid material as a sensitive sensor for the simultaneous determination of dihydroxybenzenes isomers. Eur. J. Inorg. Chem. 2013, 2013, 5746–5754. [Google Scholar] [CrossRef]
- Kumar, P.; Narwal, V.; Jaiwal, R.; Pundir, C. Construction and application of amperometric sarcosine biosensor based on SOxNPs/AuE for determination of prostate cancer. Biosens. Bioelectron. 2018, 122, 140–146. [Google Scholar] [CrossRef]
- de Lima, C.A.; Santana, E.R.; Piovesan, J.V.; Spinelli, A. Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides. Anal. Bioanal. Chem. 2016, 408, 2595–2606. [Google Scholar] [CrossRef]
- Xia, J.J.; Wang, P.Y.; Zou, B.; Onyinye, A.I. Enhancing electrochemical sensing for catechol by biomimetic oxidase covalently functionalized graphene oxide. Bioproc. Biosyst. Eng. 2021, 44, 343–353. [Google Scholar]
- Ye, R.I.; Yong, M.K.; Lee, Y.; Choi, W.Y.; Kim, S.H.; Lee, S.W.; Moon, H.C. Ultra-low power electrochromic heat shutters through tailoring diffusion-controlled behaviors. ACS Appl. Mater. Interfaces 2020, 12, 30635–30642. [Google Scholar]
- Liu, Y.; Liao, H.; Zhou, Y.; Du, Y.; Wei, C.; Zhao, J.; Sun, S.; Loo, J.S.; Xu, Z.J. Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochim. Acta 2015, 180, 1059–1067. [Google Scholar] [CrossRef]
- Zhang, B.; She, N.; Du, J.; Zhang, M.; Fang, G.; Wang, S. Nanocomposites based on quasi-networked Au1.5Pt1Co1 ternary alloy nanoparticles and decorated with poly-L-cysteine film for the electrocatalytic application of hydroquinone sensing. Ecotoxicol. Environ. Saf. 2020, 207, 111251. [Google Scholar] [CrossRef]
- Wang, H.L.; Hu, Q.Q.; Meng, Y.; Jin, Z.; Fang, Z.; Fu, Q.; Gao, W.; Xu, L.; Song, Y.; Lu, F. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J. Hazard. Mater. 2018, 353, 151–157. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, N.; Wang, C.; Gao, W.; Chen, M.; Liu, N.; Duan, J.; Hou, B. Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. J. Electroanal. Chem. 2020, 877, 114530. [Google Scholar] [CrossRef]
- Yang, S.; Yang, M.; Yao, X.; Fa, H.; Wang, Y.; Hou, C. A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers. Sens. Actuators B Chem. 2020, 320, 128294. [Google Scholar] [CrossRef]
- Aydar, S.; Bayraktepe, D.E.; Filik, H.; Yazan, Z. A Nano-Sepiolite clay electrochemical sensor for the rapid electro–catalytic detection of hydroquinone in cosmetic products. Acta Chim. Slov. 2018, 65, 946–954. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, J.; Han, D.; Zhao, S.; Zhu, R.; Cui, G. A three-electrode integrated electrochemical platform based on nanoporous gold for the simultaneous determination of hydroquinone and catechol with high selectivity. Analyst 2020, 146, 232–243. [Google Scholar] [CrossRef]
- Buledi, J.A.; Ameen, S.; Khand, N.H.; Solangi, A.R.; Taqvi, I.H.; Agheem, M.H.; Wajdan, Z. CuO Nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis 2020, 32, 1600–1607. [Google Scholar] [CrossRef]
- Koçak, S. Platinum nanoparticles/poly(isoleucine) modified glassy carbon electrode for the simultaneous determination of hydroquinone and catechol. Electroanalysis 2020, 33, 375–382. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Kalantarian, S.M.; Azhdeh, A. A novel electrochemical sensor for simultaneous determination of hydroquinone, catechol, and resorcinol using a carbon paste electrode modified by Zn-MOF, nitrogen-doped graphite, and AuNPs. Electroanalysis 2020, 33, 160–169. [Google Scholar] [CrossRef]
- Yazid, S.N.A.M.; Isa, I.M.; Ali, N.M.; Hashim, N.; Saidin, M.I.; Ahmad, M.S.; Asiri, A.M.; Khan, A.; Zainul, R. Graphene/iridium(III) dimer complex composite modified glassy carbon electrode as selective electrochemical sensor for determination of hydroquinone in real-life water samples. Int. J. Environ. Anal. Chem. 2020, 102, 2607–2624. [Google Scholar] [CrossRef]
- Chetankumar, K.; Swamy, B.K.; Sharma, S. Fabrication of voltammetric efficient sensor for catechol, hydroquinone and resorcinol at MgO modified pre-treated carbon paste electrode. Mater. Chem. Phys. 2020, 252, 123231. [Google Scholar] [CrossRef]
- Huang, R.; Liao, D.; Chen, S.; Yu, J.; Jiang, X. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sens. Actuators B Chem. 2020, 320, 128386. [Google Scholar] [CrossRef]
- Chetankumar, K.; Swamy, B.E.K.; Naik, T.S.S.K. A reliable electrochemical sensor for detection of catechol and hydroquinone at MgO/GO modified carbon paste electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 19728–19740. [Google Scholar] [CrossRef]
- Zhou, T.; Gao, W.; Gao, Y.; Wang, Q. Simultaneous determination of catechol and hydroquinone using non-enzymatic Co3O4@carbon core/shell composites based sensor. J. Electrochem. Soc. 2019, 166, B1069–B1078. [Google Scholar] [CrossRef]
- Balakumar, V.; Prakash, P. A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J. Catal. 2016, 344, 795–805. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Z.; Zhou, J.; Fang, Y.; Wu, H.; Xin, F.; Zhang, W.; Ma, J.; Xu, N.; He, A.; et al. Amperometric biosensors based on recombinant bacterial laccase CotA for hydroquinone determination. Electroanalysis 2019, 32, 142–148. [Google Scholar] [CrossRef]
Electrochemical Sensor | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|
Fe2O3/CNTs/FTO electrode | 1.0~80.0 | 0.5 | [24] |
P-L-Cys/Au1.5Pt1Co1/GCE | 0.1~200 | 0.045 | [25] |
MIL-101(Cr)-rGO-2-CPE | 4~1000 | 0.66 | [26] |
COF-3-BPPF6-CPE | 2~2000 | 0.31 | [27] |
ZIF-8/CNF/GCE | 2~510 | 0.06 | [28] |
NSC/CPE | 0.01~700 | 0.0103 | [29] |
NPG electrode | 0.2~100 | 0.083 | [30] |
CuO/GCE | 0.3~250 | 0.009 | [31] |
Pt/Poly(Isoleucine)/GCE | 0.1~100 | 0.08 | [32] |
Au-gC3N4-MOF-CPE | 0.005~100 | 0.001 | [33] |
graphene/Ir(III) complex/GCE | 0.05~100 | 0.001 | [34] |
MgOMPCPE | 10~100 | 0.11 | [35] |
alk-Ti3C2/N-PC/GCE | 0.5~50 | 0.0048 | [36] |
MgO/GO/ MCPE | 50~400 | 0.3 | [37] |
Co3O4@carbon-2/GCE | 0.8~127.1 | 0.03 | [38] |
Ag NP-CH/GCE | 0.1–100 | 0.12 | This work |
Sample | Added (μM) | Measured (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tap water | 0 | 0 | - | - |
10 | 10.4 | 103.9 | 2.34 | |
30 | 31.0 | 103.5 | 3.94 | |
50 | 49.2 | 98.4 | 2.88 | |
River water | 0 | 0 | - | - |
10 | 9.9 | 98.7 | 3.47 | |
30 | 30.9 | 103.3 | 2.36 | |
50 | 51.3 | 102.7 | 4.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Gao, H.; Rojas, O.J.; Dai, H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers 2023, 15, 2424. https://doi.org/10.3390/polym15112424
Xu T, Gao H, Rojas OJ, Dai H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers. 2023; 15(11):2424. https://doi.org/10.3390/polym15112424
Chicago/Turabian StyleXu, Tingting, Huanli Gao, Orlando J. Rojas, and Hongqi Dai. 2023. "Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone" Polymers 15, no. 11: 2424. https://doi.org/10.3390/polym15112424
APA StyleXu, T., Gao, H., Rojas, O. J., & Dai, H. (2023). Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers, 15(11), 2424. https://doi.org/10.3390/polym15112424