Changes in the Electrophysical Parameters of Nanomodified Elastomers Caused by Electric Current’s Passage
Abstract
:1. Introduction
- (1)
- Obtaining elastic organosilicon and polyurethane matrices of modified MWCNTs synthesized by chemical vapor deposition (CVD) technology;
- (2)
- Study the electrically conductive nanomodified elastomers of heat release at a supply voltage in the range from 220 to 300 V.
2. Materials and Methods
2.1. Method for Studying the Temperature Field on the Surface of Samples of Nanomodified Elastomers
2.2. Structural Studies of MWCNTs and Elastomer’s Matrix
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Ammar, M.; Haleem, A.; Javaid, M.; Bahl, S.; Garg, S.B.; Shamoon, A.; Garg, J. Significant applications of smart materials and Internet of Things (IoT) in the automotive industry. Mater. Today Proc. 2022, 68, 1542–1549. [Google Scholar] [CrossRef]
- Fu, G.; Shi, Q.; He, Y.; Xie, L.; Liang, Y. Electroactive and photoluminescence of electrospun P(VDF-HFP) composite nanofibers with Eu3+ complex and BaTiO3 nanoparticles. Polymer 2022, 240, 124496. [Google Scholar] [CrossRef]
- John, D.W. Madden, Chapter 2—Dielectric elastomers as high-performance electroactive polymers. In Dielectric Elastomers as Electromechanical Transducers; Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 13–21. [Google Scholar] [CrossRef]
- Sui, X.; Downing, J.R.; Hersam, M.C.; Chen, J. Additive manufacturing and applications of nanomaterial-based sensors. Mater. Today 2021, 48, 135–154. [Google Scholar] [CrossRef]
- Song, P.; Song, J.; Zhang, Y. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Compos. Part B Eng. 2020, 191, 107979. [Google Scholar] [CrossRef]
- Shan, Y.; Li, Z.; Yu, T.; Wang, X.; Cui, H.; Yang, K.; Cui, Y. Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol. 2022, 218, 109208. [Google Scholar] [CrossRef]
- Stanisauskis, E.; Mashayekhi, S.; Pahari, B.; Mehnert, M.; Steinmann, P.; Oates, W. Fractional and fractal order effects in soft elastomers: Strain rate and temperature dependent nonlinear mechanics. Mech. Mater. 2022, 172, 104390. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Liang, Y.; Yang, Z.; Bai, Y.; He, J. Insights into the synergistic effect of methoxy functionalized halloysite nanotubes for dielectric elastomer with improved dielectric properties and actuated strain. Compos. Sci. Technol. 2023, 231, 109802. [Google Scholar] [CrossRef]
- Yang, D.; Huo, Y.; Zhang, Q.; Xie, J.; Yang, Z. Recent advances on air heating system of cabin for pure electric vehicles: A review. Heliyon 2022, 8, e11032. [Google Scholar] [CrossRef]
- Kim, G.T.; Jung, J.Y. Effect of steering wheel heating system on hand thermal sensation. J. Mech. Sci. Technol. 2022, 36, 3717–3725. [Google Scholar] [CrossRef]
- Evtimov, I.; Ivanov, R. Sapundjiev Energy consumption of auxiliary systems of electric cars. MATEC Web Conf. 2017, 133, 06002. [Google Scholar] [CrossRef]
- Preis, W.; Sitte, W. Electrical properties of grain boundaries in interfacially controlled functional ceramics. J. Electroceram. 2015, 34, 185–206. [Google Scholar] [CrossRef]
- Bell, J.G.; Graule, T.; Stuer, M. Stuer Barium titanate-based thermistors: Past achievements, state of the art, and future perspectives. Appl. Phys. Rev. 2021, 8, 031318. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yang, S.F. PTCR effect in donor doped barium titanate: Review of compositions, microstructures, processing and properties. Adv. Appl. Ceram. 2011, 110, 257–269. [Google Scholar] [CrossRef]
- Ebert, J.N.; Rheinheimer, W. Electric field induced degradation of high-voltage PTCR ceramics. Open Ceram. 2022, 11, 100280. [Google Scholar] [CrossRef]
- Hudaya, C.; Jeon, B.J.; Lee, J.K. High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl. Mater. Interfaces 2015, 7, 57–61. [Google Scholar] [CrossRef]
- Zheming, G.; Chunzhong, L.; Gengchao, W.; Ling, Z.; Qilin, C.; Xiaohui, L.; Wendong, W.; Shilei, J. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. Sens. Actuators B 2009, 140, 451–460. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Luo, J.; Lu, H.; Zhang, Q.; Yao, Y.; Chen, M.; Li, Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon 2016, 110, 343–349. [Google Scholar] [CrossRef]
- Orellana, J.; Moreno-Villoslada, I.; Bose, R.K.; Picchioni, F.; Flores, M.E.; Araya-Hermosilla, R. Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers 2021, 13, 649. [Google Scholar] [CrossRef]
- Gu, B.; Pu, G.; Ding, B.; Zhang, K.; He, R.; Fan, J.; Xing, T.; Wu, J.; Yang, W. Improved interfacial bonding strength of silicone rubber/carbon fiber modified by dopamine. Polym. Compos. 2022, 43, 6975–6986. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Gang, H.-E.; Park, G.-T.; Jeon, H.-B.; Kim, H.B.; Oh, S.-H.; Jeong, Y.G. Synergistic effect of polyurethane-coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and long-term durability of polyamide-based thermoplastic composites. Polym. Compos. 2022, 43, 1685–1697. [Google Scholar] [CrossRef]
- Joshi, A.M.; Athawale, A.A. Electrically Conductive Silicone/Organic Polymer Composites. Silicon 2014, 6, 199–206. [Google Scholar] [CrossRef]
- Ali, I.; AlGarni, T.S.; Shchegolkov, A.; Shchegolkov, A.; Jang, S.-H.; Galunin, E.; Komarov, F.; Borovskikh, P.; Imanova, G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers. Polym. Bull. 2021; in press. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Nachtane, M.; Stanishevskiy, Y.M.; Dodina, E.P.; Rejepov, D.T.; Vetcher, A.A. The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites. J. Compos. Sci. 2022, 6, 333. [Google Scholar] [CrossRef]
- Eun-Soo, P. Resistivity and Thermal Reproducibility of the Carbon Black and SnO2/Sb Coated Titanium Dioxide Filled Silicone Rubber Heaters. Macromol. Mater. Eng. 2005, 12, 1213–1219. [Google Scholar] [CrossRef]
- Oi, K.; Komoto, J.; Kawai, T.; Nonoguchi, Y. Low background estimation of metallic-to-semiconducting carbon nanotube ratio by using infrared spectroscopy. Synth. Met. 2021, 282, 116958. [Google Scholar] [CrossRef]
- Slepchenkov, M.M.; Petrunin, A.A.; Glukhova, O.E. In Silico Study of the Influence of Various Substrates on the Electronic Properties and Electrical Conductivity of Mono- and Bilayer Films of Armchair Single-Walled Carbon Nano-tubes. ChemEngineering 2021, 5, 48. [Google Scholar] [CrossRef]
- Collins, P.G.; Arnold, M.S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709. [Google Scholar] [CrossRef]
- Senthilkumar, V. Some approximate buckling solutions of triple-walled carbon nanotube. Vietnam. J. Mech. 2022, 44, 212–232. [Google Scholar] [CrossRef]
- Huang, J.Y.; Chen, S.; Jo, S.H.; Wang, Z.; Han, D.X.; Chen, G.; Dresselhaus, M.S.; Ren, Z.F. Atomic-Scale Imaging of Wall-by-Wall Breakdown and Concurrent Transport Measurements in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 2005, 94, 236802. [Google Scholar] [CrossRef]
- Farajian, A.A.; Yakobson, B.I.; Mizuseki, H.; Kawazoe, Y. Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. Phys. Rev. B 2003, 67, 205423. [Google Scholar] [CrossRef]
- Collins, P.G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2001, 86, 3128. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.; Yun, D.-J.; Kim, D.; Park, H.; Park, S.-H. Study of electric heating effects on carbon nanotube polymer composites. Org. Electron. 2014, 15, 2734–2741. [Google Scholar] [CrossRef]
- Lee, J.-s.; Jo, H.; Choe, H.-s.; Lee, D.-s.; Jeong, H.; Lee, H.-r.; Kweon, J.-h.; Lee, H.; Myong, R.S.; Nam, Y. Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite application. Compos. Struct. 2022, 289, 115510. [Google Scholar] [CrossRef]
- Wan, N.; Sun, L.-t.; Ding, S.-n.; Xu, T.; Hu, X.-h.; Sun, J.; Bi, H.-c. Synthesis of graphene–CNT hybrids via joule heating: Structural characterization and electrical transport. Carbon 2013, 53, 260–268. [Google Scholar] [CrossRef]
- Chien, A.-T.; Cho, S.; Joshi, Y.; Kumar, S. Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer 2014, 55, 6896–6905. [Google Scholar] [CrossRef]
- Shehzad, K.; Hakro, A.A.; Zeng, Y.; Yao, S.H.; Xiao-Hong, Y.; Mumtaz, M.; Nadeem, K.; Khisro, N.S.; Dang, Z.M. Two percolation thresholds and remarkably high dielectric permittivity in pristine carbon nanotube/elastomer composites. Appl. Nanosci. 2015, 5, 969–974. [Google Scholar] [CrossRef]
- Huang, S.; Wang, M.; Liu, T.; Zhang, W.-D.; Tjiu, W.C.; He, C.; Lu, X. Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding. Polym. Eng. Sci. 2009, 49, 1063–1068. [Google Scholar] [CrossRef]
- Ali, I.; Shchegolkov, A.; Shchegolkov, A.; Zemtsova, N.; Bogoslovskiy, V.; Shigabaeva, G.; Galunin, E.; Hussain, I.; Almalki, A.S.; Alsharif, M.A.; et al. Preparation and application practice of temperature self-regulating flexible polymer electric heaters. Polym. Eng. Sci. 2022, 62, 730. [Google Scholar] [CrossRef]
- Leicht, H.; Kraus, E.; Baudrit, B.; Hochrein, T.; Bastian, M.; Langer, M. Chapter 12—Electrically conductive polymer nanocomposites for thermal comfort in electric vehicles. In Micro and Nano Technologies, Nanotechnology in the Automotive Industry; Song, H., Ngu-yen, T.A., Yasin, G., Singh, N.B., Gupta, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 229–251. [Google Scholar] [CrossRef]
- Guangming, C.; Mengyun, Y.; Junjie, P.; Deshan, C.; Zhigang, X.; Xin, W.; Bin, T. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl. Mater. Interfaces 2018, 10, 32726–32735. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, L.; Zhang, J.; Chen, K.; Yin, Y.; Wang, C. Durable and tunable temperature-responsive silk fabricated with reactive thermochromic pigments. Prog. Org. Coat. 2020, 147, 105697. [Google Scholar] [CrossRef]
- Morshed, M.N.; Miankafshe, M.A.; Persson, N.-K.; Behary, N.; Nierstrasz, V.A. Development of a multifunctional graphene/Fe-loaded polyester textile: Robust electrical and catalytic properties. Dalton Trans. 2020, 49, 17281–17300. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Li, Y.; Meng, Y.; Xie, Q.; Lavorgna, M. Electric heating behavior of reduced oxide graphene/carbon nanotube/natural rubber composites with macro-porous structure and segregated filler network. Polymers 2020, 12, 2411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Du, P.-Y.; Li, W.-J.; Meng, J.-H.; Zhao, L.-H.; Jia, S.-L.; Jia, L.-C. Highly rapid-response electrical heaters based on polymer-infiltrated carbon nanotube networks for battery thermal management at subzero temperatures. Compos. Sci. Technol. 2023, 231, 109796. [Google Scholar] [CrossRef]
- Jang, D.; Yoon, H.N.; Seo, J.; Park, S.; Kil, T.; Lee, H.K. Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Compos. Sci. Technol. 2021, 212, 108866. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Sassani, A.; Gopalakrishnan, K.; Mina, M. Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency. Mater. Des. 2018, 157, 303–313. [Google Scholar] [CrossRef]
- Noh, J.Y.; Kim, J.M. Transparent film heater based on a microgrid-patterned metal nanowire network prepared by using the bilayer lift-off technique. J. Korean Phys. Soc. 2022, 80, 404–409. [Google Scholar] [CrossRef]
- Tembei, S.A.; Ali, M.K.; Hessein, A.; El-Bab, A.M.F.; El-Moneim, A.A. High-performance flexible electrothermal Joule heaters from laser reduced F-N Co-doped graphene oxide with extended Sp2 networks. FlatChem 2022, 36, 100437. [Google Scholar] [CrossRef]
MWCNTs Catalyst for Synthesis | Elastomer’s Designation | |
---|---|---|
CO (Silicon-Organic Compound) | PU (Polyurethane) | |
Ni/MgO | NCO 1 | NPU 1 |
Co-Mo/MgO | NCO 2 | NPU 2 |
## | Materials | Voltage, V | Area, cm2 | Temperature °C |
---|---|---|---|---|
1 | CCSCF [42] | 10 | 2 × 2 | 105 |
2 | rGo/PET [43] | 10 | 2 × 4 | 73 |
3 | CNT [44] | 20 | 2 × 2 | 90 |
4 | rGO/CNT/NR [45] | 15 | - | 69.1 |
5 | CNT/PU [46] | 2,5 | - | 70.4 |
6 | CNT-embedded electric heating composites [47] | 20 | - | 80 |
7 | carbon fiber (CF)/asphalt mastics [48] | 60 | - | 5 |
78 | silver nanowire (AgNW) microgrid (AMG) structures [49] | 2 | - | 51.4 |
79 | F-N Co-Doped Graphene Oxide with Extended Sp2 Networks [50] | 9 | - | 365 |
10 | Under investigation: NCO 1/NCO 2 NPU 1/NPU 2 | 220 | 10 × 7 | 64.2/57.3 58.3/55.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchegolkov, A.V.; Shchegolkov, A.V.; Zemtsova, N.V.; Stanishevskiy, Y.M.; Vetcher, A.A. Changes in the Electrophysical Parameters of Nanomodified Elastomers Caused by Electric Current’s Passage. Polymers 2023, 15, 249. https://doi.org/10.3390/polym15010249
Shchegolkov AV, Shchegolkov AV, Zemtsova NV, Stanishevskiy YM, Vetcher AA. Changes in the Electrophysical Parameters of Nanomodified Elastomers Caused by Electric Current’s Passage. Polymers. 2023; 15(1):249. https://doi.org/10.3390/polym15010249
Chicago/Turabian StyleShchegolkov, Alexandr V., Aleksei V. Shchegolkov, Natalia V. Zemtsova, Yaroslav M. Stanishevskiy, and Alexandre A. Vetcher. 2023. "Changes in the Electrophysical Parameters of Nanomodified Elastomers Caused by Electric Current’s Passage" Polymers 15, no. 1: 249. https://doi.org/10.3390/polym15010249
APA StyleShchegolkov, A. V., Shchegolkov, A. V., Zemtsova, N. V., Stanishevskiy, Y. M., & Vetcher, A. A. (2023). Changes in the Electrophysical Parameters of Nanomodified Elastomers Caused by Electric Current’s Passage. Polymers, 15(1), 249. https://doi.org/10.3390/polym15010249