Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Settings for the Peatland Site
2.2. Bulk and Molecular Analysis
2.3. Principal Component Analysis
3. Results and Discussion
3.1. Bulk Analysis and CuO-NaOH Phenolic Sub-Units
3.2. Degradation, Change of Vegetation, and Diagenetic Parameters of Lignin
3.2.1. Diagenetic Trends of Lignin Phenols
3.2.2. Source Vegetation of Phenolic CuO Oxidation Products
3.3. Principal Component Analysis (PCA)
3.3.1. Application of PCA to Phenolic Mass Fractions
3.3.2. Application of PCA for Diagenetic Proxies
3.3.3. PCA & Degradation Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clymo, R.S.; Turunen, J.; Tolonen, K. Carbon accumulation in peatland. Oikos 1998, 81, 368–388. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Boudet, A.-M. Lignins and lignification: Selected issues. Plant Physiol. Biochem. 2000, 38, 81–96. [Google Scholar] [CrossRef]
- Hedges, J.I.; Ertel, J.R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal. Chem. 1982, 54, 174–178. [Google Scholar] [CrossRef]
- Staniszewski, A.; Lejman, A.; Pempkowiak, J. Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin. Oceanologia 2001, 43, 421–439. [Google Scholar]
- Otto, A.; Simpson, M.J. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 2006, 80, 121–142. [Google Scholar] [CrossRef]
- Younes, K.; Moghrabi, A.; Moghnie, S.; Mouhtady, O.; Murshid, N.; Grasset, L. Assessment of the Efficiency of Chemical and Thermochemical Depolymerization Methods for Lignin Valorization: Principal Component Analysis (PCA) Approach. Polymers 2022, 14, 194. [Google Scholar] [CrossRef]
- Tareq, S.M.; Tanaka, N.; Ohta, K. Biomarker signature in tropical wetland: Lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment. Sci. Total Environ. 2004, 324, 91–103. [Google Scholar] [CrossRef]
- Thevenot, M.; Dignac, M.-F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Younes, K.; Laduranty, J.; Descostes, M.; Grasset, L. Molecular biomarkers study of an ombrotrophic peatland impacted by an anthropogenic clay deposit. Org. Geochem. 2017, 105, 20–32. [Google Scholar] [CrossRef]
- Ertel, J.R.; Hedges, J.I. Sources of sedimentary humic substances: Vascular plant debris. Geochim. Cosmochim. Acta 1985, 49, 2097–2107. [Google Scholar] [CrossRef]
- Joliffe, I.T.; Morgan, B.J.T. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1992, 1, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Kirk, T.K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysasporium burds. Science 1983, 221, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, J.I.; Clark, W.A.; Come, G.L. Organic matter sources to the water column and surficial sediments of a marine bay. Limnol. Oceanogr. 1988, 33, 1116–1136. [Google Scholar] [CrossRef]
- Hedges, J.I.; Mann, D.C. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 1979, 43, 1803–1807. [Google Scholar] [CrossRef]
- Iiyama, K.; Lam, T.B.T.; Stone, B.A. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 1990, 29, 733–737. [Google Scholar] [CrossRef]
- Lam, T.B.T.; Kadoya, K.; Iiyama, K. Bonding of hydroxycinnamic acids to lignin: Ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 2001, 57, 987–992. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Comparison of thermochemolysis and classical chemical degradation and extraction methods for the analysis of carbohydrates, lignin and lipids in a peat bog. J. Anal. Appl. Pyrolysis 2018, 134, 61–72. [Google Scholar] [CrossRef]
- Goñi, M.A.; Montgomery, S. Alkaline CuO Oxidation with a Microwave Digestion System: Lignin Analyses of Geochemical Samples. Anal. Chem. 2000, 72, 3116–3121. [Google Scholar] [CrossRef] [PubMed]
- Amelung, W.; Flach, K.-W.; Zech, W. Lignin in Particle-Size Fractions of Native Grassland Soils as Influenced by Climate. Soil Sci. Soc. Am. J. 1999, 63, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Kögel-Knabner, I.; Bruhn, F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org. Geochem. 2002, 33, 1131–1142. [Google Scholar] [CrossRef]
- Wiesner, M.R.; Lowry, G.V.; Jones, K.L.; Hochella, M.F., Jr.; Di Giulio, R.T.; Casman, E.; Bernhardt, E.S. Decreasing Uncertainties in Assessing Environmental Exposure, Risk, and Ecological Implications of Nanomaterials. Environ. Sci. Technol. 2009, 43, 6458–6462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, S.L.; Filley, T.R.; Abbott, G.D. The effect of afforestation on the soil organic carbon (SOC) of a peaty gley soil using on-line thermally assisted hydrolysis and methylation (THM) in the presence of 13C-labelled tetramethylammonium hydroxide (TMAH). J. Anal. Appl. Pyrolysis 2009, 85, 417–425. [Google Scholar] [CrossRef]
- Bahri, H.; Rasse, D.P.; Rumpel, C.; Dignac, M.-F.; Bardoux, G.; Mariotti, A. Lignin degradation during a laboratory incubation ollowed by 13C isotope analysis. Soil Biol. Biochem. 2008, 40, 1916–1922. [Google Scholar] [CrossRef]
- Ziegler, F.; Kögel, I.; Zech, W. Alteration of gymnosperm and angiosperm lignin during decomposition in forest humus layers. Z. Pflanz. Bodenkd. 1986, 149, 323–331. [Google Scholar] [CrossRef]
- Ertel, J.R.; Hedges, J.I. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim. Cosmochim. Acta 1984, 48, 2065–2074. [Google Scholar] [CrossRef]
- Opsahl, S.; Benner, R. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 1995, 59, 4889–4904. [Google Scholar] [CrossRef]
- Goñi, M.A.; Nelson, B.; Blanchette, R.A.; Hedges, J.I. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim. Cosmochim. Acta 1993, 57, 3985–4002. [Google Scholar] [CrossRef]
- Ishiwatari, R.; Uzaki, M. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan). Geochim. Cosmochim. Acta 1987, 51, 321–328. [Google Scholar] [CrossRef]
- Orem, W.H.; Colman, S.M.; Lerch, H.E. Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies. Org. Geochem. 1997, 27, 153–172. [Google Scholar] [CrossRef]
- Dittmar, T.; Lara, R.J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil). Geochim. Cosmochim. Acta 2001, 65, 1417–1428. [Google Scholar] [CrossRef]
- Hu, F.S.; Hedges, J.I.; Gordon, E.S.; Brubaker, L.B. Lignin biomarkers and pollen in postglacial sediments of an Alaskan lake. Geochim. Cosmochim. Acta 1999, 63, 1421–1430. [Google Scholar] [CrossRef]
- Wilson, J.O.; Valiela, I.; Swain, T. Sources and concentrations of vascular plant material in sediments of Buzzards Bay, Massachusetts, USA. Mar. Biol. 1985, 90, 129–137. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. The application of DFRC method for the analysis of carbohydrates in a peat bog: Validation and comparison with conventional chemical and thermochemical degradation techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
Samples Designation | Description | Depth (cm) | N | C | H | S | O |
---|---|---|---|---|---|---|---|
Upp | Upper vegetation with the underlying soil | 4 | 2.36 | 40.27 | 3.99 | 6.78 | 36.94 |
Acro | Acrotelm samples | 12 | 1.45 | 25.80 | 3.00 | 5.56 | 24.79 |
Int_Acro-Meso | Interface between acrotelm and mesotelm | 24 | 1.99 | 27.28 | 3.46 | 4.98 | 23.61 |
Meso_U | Upper part of mesotelm | 32 | 1.52 | 22.01 | 3.03 | 3.87 | 18.71 |
Meso_B | Bottom part of mesotelm | 44 | 1.53 | 23.81 | 3.15 | 2.92 | 19.81 |
Int_Meso-Cato | Interface between mesotelm and catotelm | 56 | 1.84 | 38.23 | 4.35 | 4.15 | 25.18 |
Cato_U | Upper part of Catotelm | 72 | 1.39 | 47.76 | 4.98 | 2.15 | 27.71 |
Cato_B | Bottom part of Catotelm | 92 | 1.02 | 39.69 | 4.10 | 3.24 | 22.80 |
BtCo | Bottomhole of the core | 100 | 0.85 | 39.33 | 3.71 | 1.5 | 27.02 |
Plant Types | LPVI Value Ranges | ||
---|---|---|---|
Low | Mean | High | |
Woody Gymnosperms | 1 | 1 | 1 |
Non-woody Gymnosperms | 12 | 19 | 27 |
Woody Angiosperms | 67 | 181 | 415 |
Non-woody Angiosperms | 378 | 1090 | 2782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, K.; Moghnie, S.; Khader, L.; Obeid, E.; Mouhtady, O.; Grasset, L.; Murshid, N. Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage. Polymers 2023, 15, 1200. https://doi.org/10.3390/polym15051200
Younes K, Moghnie S, Khader L, Obeid E, Mouhtady O, Grasset L, Murshid N. Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage. Polymers. 2023; 15(5):1200. https://doi.org/10.3390/polym15051200
Chicago/Turabian StyleYounes, Khaled, Sara Moghnie, Lina Khader, Emil Obeid, Omar Mouhtady, Laurent Grasset, and Nimer Murshid. 2023. "Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage" Polymers 15, no. 5: 1200. https://doi.org/10.3390/polym15051200
APA StyleYounes, K., Moghnie, S., Khader, L., Obeid, E., Mouhtady, O., Grasset, L., & Murshid, N. (2023). Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage. Polymers, 15(5), 1200. https://doi.org/10.3390/polym15051200