Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product
Abstract
:1. Introduction
2. Product and Geometry
3. Materials and Properties
4. Results
4.1. Influence of Injection Time
4.2. Influence of Melt Temperature
4.3. Influence of Mold Temperature
4.4. Influence of Packing Pressure
4.5. Influence of Packing Time
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Martanto, W.; Davis, S.P.; Holiday, N.R.; Wang, J.; Gill, H.S.; Prausnitz, M.R. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 2004, 21, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Son, Y.; Kim, D.; Kim, Y.K.; Choi, N.; Yoon, E.-S.; Cho, I.-J. A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sens. Actuators B Chem. 2015, 209, 413–422. [Google Scholar] [CrossRef]
- Vasylieva, N.; Marinesco, S.; Barbier, D.; Sabac, A. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. Biosens. Bioelectron. 2015, 72, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Z.; Huo, M.-R.; Zhou, J.-P.; Zhou, Y.-Q.; Hao, B.-H.; Liu, T.; Zhang, Y. Super-short solid silicon microneedles for transdermal drug delivery applications. Int. J. Pharm. 2010, 389, 122–129. [Google Scholar] [CrossRef]
- Badran, M.M.; Kuntsche, J.; Fahr, A. Skin penetration enhancement by a microneedle device (Dermaroller (R)) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 2009, 36, 511–523. [Google Scholar] [CrossRef]
- Samant, P.P.; Niedzwiecki, M.M.; Raviele, N.; Tran, V.; Mena-Lapaix, J.; Walker, D.I.; Felner, E.I.; Jones, D.P.; Miller, G.W.; Prausnitz, M.R. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 2020, 12, eaaw0285. [Google Scholar] [CrossRef]
- Yu, W.; Ruan, S.; Li, Z.; Gu, J.; Wang, X.; Shen, C.; Chen, B. Effect of injection velocity on the filling behaviors of microinjection-molded polylactic acid micropillar array product. Int. J. Adv. Manuf. Technol. 2019, 103, 2929–2940. [Google Scholar] [CrossRef]
- Shah, V.; Choudhury, B.K. Fabrication, physicochemical characterization, and performance evaluation of biodegradable polymeric microneedle patch system for enhanced transcutaneous flux of high molecular weight therapeutics. AAPS PharmSciTech 2017, 18, 2936–2948. [Google Scholar] [CrossRef]
- Gülçür, M.; Romano, J.M.; Penchev, P.; Gough, T.; Brown, E.; Dimov, S.; Whiteside, B. A cost-effective process chain for thermoplastic microneedle manufacture combining laser micro-machining and micro-injection moulding. CIRP J. Manuf. Sci. Technol. 2021, 32, 311–321. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, C.; Lai, S.; Juang, Y.-J.; Yang, Y.; Lee, L.J. Polymeric nanonozzle array fabricated by sacrificial template imprinting. Adv. Mater. 2005, 17, 1182–1186. [Google Scholar] [CrossRef]
- Liu, S.; Jin, M.-N.; Quan, Y.-S.; Kamiyama, F.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur. J. Pharm. Biopharm. 2014, 86, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.M.; Caussin, J.; Pavel, S.; Bouwstra, J.A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 2008, 35, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Terry, R.N.; Tang, J.; Feng, M.R.; Schwendeman, S.P.; Prausnitz, M.R. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 2019, 3, 220–229. [Google Scholar] [CrossRef]
- DU, L.; Chang, H.; Song, M.; Liu, C. The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips. Microsyst. Technol. Micro-Nanosyst.-Inf. Storage Process. Syst. 2012, 18, 815–822. [Google Scholar] [CrossRef]
- Matschuk, M.; Bruus, H.; Larsen, N.B. Nanostructures for all-polymer microfluidic systems. Microelectron. Eng. 2010, 87, 1379–1382. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, F.; Gilchrist, M.D.; Zhang, N. Precision replication of micro features using micro injection moulding: Process simulation and validation. Mater. Des. 2019, 177, 107829. [Google Scholar] [CrossRef]
- Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J.; et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017, 390, 649–658. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Jiang, B.; Weng, C.; Zhang, L. Experimental study on the replication quality of micro-nano cross-shaped structure arrays in injection molding. Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems. Microsyst. Technol. 2017, 23, 983–989. [Google Scholar] [CrossRef]
- Lucchetta, G.; Sorgato, M.; Carmignato, S.; Savio, E. Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces. CIRP Ann. 2014, 63, 521–524. [Google Scholar] [CrossRef]
- Liou, A.-C.; Chen, R.-H. Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int. J. Adv. Manuf. Technol. 2005, 28, 1097–1103. [Google Scholar] [CrossRef]
- Masato, D.; Sorgato, M.; Lucchetta, G. Analysis of the influence of part thickness on the replication of micro-structured surfaces by injection molding. Mater. Des. 2016, 95, 219–224. [Google Scholar] [CrossRef]
- Marhöfer, D.M.; Tosello, G.; Islam, A.; Hansen, H.N. Gate design in injection molding of microfluidic components using process simulations. J. Micro Nano-Manuf. 2016, 4, 025001. [Google Scholar] [CrossRef] [Green Version]
- Sorgato, M.; Babenko, M.; Lucchetta, G.; Whiteside, B. Investigation of the influence of vacuum venting on mould surface temperature in micro injection moulding. Int. J. Adv. Manuf. Technol. 2016, 88, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Matschuk, M.; Larsen, N.B. Injection molding of high aspect ratio sub-100 nm nanostructures. J. Micromech. Microeng. 2012, 23, 025003. [Google Scholar] [CrossRef]
- Rytka, C.; Lungershausen, J.; Kristiansen, P.M.; Neyer, A. 3D filling simulation of micro- and nanostructures in comparison to iso- and variothermal injection moulding trials. J. Micromech. Microeng. 2016, 26, 065018. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wei, Y.; Liu, T.; Gu, J.; Li, Z.; Wang, M.; Zhao, D.; Qiao, A.; Liu, Y. Multi-objective optimizations of biodegradable polymer stent structure and stent microinjection molding process. Polymers 2017, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, H.; Gu, J.; Li, Z.; Ruan, S.; Shen, C.; Wang, M. Pressure analysis of dynamic injection molding and process parameter optimization for reducing warpage of injection molded products. Polymers 2017, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Hakimian, E.; Sulong, A.B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Mater. Des. 2012, 42, 62–71. [Google Scholar] [CrossRef]
- Barghash, M.A.; AlKaabneh, F.A. Shrinkage and warpage detailed analysis and optimization for the injection molding process using multistage experimental design. Qual. Eng. 2014, 26, 319–334. [Google Scholar] [CrossRef]
- Sammoura, F.; Kang, J.; Heo, Y.-M.; Jung, T.; Lin, L. Polymeric microneedle fabrication using a microinjection molding technique. Microsyst. Technol. 2006, 13, 517–522. [Google Scholar] [CrossRef]
- Georgiou, S.; Stylianou, S. Block-circulant matrices for constructing optimal Latin hypercube designs. J. Stat. Plan. Inference 2010, 141, 1933–1943. [Google Scholar] [CrossRef]
Coefficients | n | τ* [Pa] | |||||
---|---|---|---|---|---|---|---|
Value | 0.3846 | 1.29 × 105 | 2.045 × 107 | 373.15 | 0 | 16.71 | 51.6 |
Coefficients | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 8.936 × 10−4 | 7.831 × 10−7 | 1.268 × 108 | 5.315 × 10−3 | 8.605 × 10−4 | 2.67 × 10−7 | 2.277 × 108 | 3.16 × 10−3 | 388.15 | 5 × 10−8 | 3.276 × 10−5 | 6.353 × 10−2 | 9.922 × 10−9 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Packing Time [s] | Filling Fraction [%] |
---|---|---|---|---|---|---|
Value | 0.5 | 190 | 25 | 80 | 10 | 100 |
1.0 | 99.95 | |||||
2.0 | 97.27 | |||||
4.0 | 95.98 | |||||
6.0 | 66.21 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Packing Time [s] | Filling Fraction [%] |
---|---|---|---|---|---|---|
Value | 2.0 | 190 | 25 | 80 | 10 | 97.27 |
200 | 99.90 | |||||
220 | 100 | |||||
230 | 100 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Packing Time [s] | Filling Fraction [%] |
---|---|---|---|---|---|---|
Value | 2.0 | 190 | 20 | 80 | 10 | 97.27 |
25 | 97.70 | |||||
30 | 98.86 | |||||
40 | 99.72 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Packing Time [s] | Filling Fraction [%] |
---|---|---|---|---|---|---|
Value | 2.0 | 190 | 25 | 60 | 10 | 81.57 |
80 | 95.98 | |||||
90 | 97.66 | |||||
100 | 100 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Packing Time [s] | Filling Fraction [%] |
---|---|---|---|---|---|---|
Value | 2.0 | 190 | 20 | 100 | 1 | 99.39 |
3 | 99.44 | |||||
5 | 99.44 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] |
---|---|---|---|---|
Lower | 0.5 | 190 | 20 | 60 |
Upper | 6.0 | 230 | 40 | 100 |
Parameters | Injection Time [s] | Melt Temperature [°C] | Mold Temperature [°C] | Packing Pressure [%] | Filling Fraction [%] | |
---|---|---|---|---|---|---|
ID | ||||||
1 | 3.46 | 213.80 | 34.17 | 86.07 | 100.00 | |
2 | 2.84 | 211.53 | 33.03 | 72.47 | 99.53 | |
3 | 2.21 | 204.73 | 30.77 | 83.80 | 100.00 | |
4 | 2.53 | 218.33 | 28.50 | 81.53 | 100.00 | |
5 | 1.59 | 200.20 | 38.70 | 65.67 | 98.94 | |
6 | 1.90 | 222.87 | 22.83 | 63.40 | 99.88 | |
7 | 0.97 | 195.67 | 23.97 | 90.60 | 100.00 | |
8 | 1.28 | 227.40 | 35.30 | 92.87 | 100.00 | |
9 | 3.15 | 207.00 | 26.23 | 74.73 | 99.99 | |
10 | 3.77 | 209.27 | 27.37 | 88.33 | 99.90 | |
11 | 4.40 | 216.07 | 29.63 | 77.00 | 99.79 | |
12 | 4.08 | 202.47 | 31.90 | 79.27 | 98.03 | |
13 | 5.02 | 220.60 | 21.70 | 95.13 | 99.91 | |
14 | 4.71 | 197.93 | 37.57 | 97.40 | 99.23 | |
15 | 5.64 | 225.13 | 36.43 | 70.20 | 99.80 | |
16 | 5.33 | 193.40 | 25.10 | 67.93 | 71.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Gu, J.; Li, Z.; Ruan, S.; Chen, B.; Shen, C.; Lee, L.J.; Wang, X. Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product. Polymers 2023, 15, 1199. https://doi.org/10.3390/polym15051199
Yu W, Gu J, Li Z, Ruan S, Chen B, Shen C, Lee LJ, Wang X. Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product. Polymers. 2023; 15(5):1199. https://doi.org/10.3390/polym15051199
Chicago/Turabian StyleYu, Wenqian, Junfeng Gu, Zheng Li, Shilun Ruan, Biaosong Chen, Changyu Shen, Ly James Lee, and Xinyu Wang. 2023. "Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product" Polymers 15, no. 5: 1199. https://doi.org/10.3390/polym15051199
APA StyleYu, W., Gu, J., Li, Z., Ruan, S., Chen, B., Shen, C., Lee, L. J., & Wang, X. (2023). Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product. Polymers, 15(5), 1199. https://doi.org/10.3390/polym15051199