Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cellular Structures
2.2. Gyroid Structure
2.3. Fused Deposition Modeling
2.4. Surface Modeling
2.5. Surface Models Quality for the Purpose of Their Manufacture by FDM Technology
3. Results and Discussion
3.1. Accuracy Comparison in Lattice Feature
3.2. Repair of Mesh Model Defects
- Single extruder with a nozzle diameter of 0.4 mm;
- Layer height of 0.12 mm;
- Line width of 0.4 mm;
- Infill density of 100%;
- Printing temperature of 218 °C;
- Build plate temperature of 60 °C;
- Print speed of 50 mm/s;
- Travel speed of 60mm/s;
- No support generated.
3.3. Recalculation of the Polygon Model within Required Tolerance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Attene, M.; Campen, M.; Kobbelt, L. Polygon Mesh Repairing: An Application Perspective. ACM Comput. Surv. 2013, 45, 1–15. [Google Scholar] [CrossRef]
- Attene, M. As-Exact-as-Possible Repair of Unprintable STL Files. Rapid Prototyp. J. 2018, 24, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Livesu, M.; Ellero, S.; Martínez, J.; Lefebvre, S.; Attene, M. From 3D Models to 3D Prints: An Overview of the Processing Pipeline. Comput. Graph. Forum 2017, 36, 537–564. [Google Scholar] [CrossRef] [Green Version]
- Ledalla, S.R.K.; Tirupathi, B.; Sriram, V. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process. J. Inst. Eng. Ser. C 2018, 99, 339–346. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Adeoye, A.O.M. 3D Printing of Bone Scaffolds with Hybrid Biomaterials. Compos. B Eng. 2019, 158, 428–436. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O. Mechanical Performances of Hip Implant Design and Fabrication with PEEK Composite. Polymer 2021, 227, 123865. [Google Scholar] [CrossRef]
- Kozior, T.; Kundera, C. Viscoelastic Properties of Cell Structures Manufactured Using a Photo-Curable Additive Technology-PJM. Polymers 2021, 13, 1895. [Google Scholar] [CrossRef]
- Pertuz-Comas, A.D.; Díaz, J.G.; Meneses-Duran, O.J.; Niño-Álvarez, N.Y.; León-Becerra, J. Flexural Fatigue in a Polymer Matrix Composite Material Reinforced with Continuous Kevlar Fibers Fabricated by Additive Manufacturing. Polymers 2022, 14, 3586. [Google Scholar] [CrossRef]
- Xiao, X.; Roh, B.-M.; Zhu, F. Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath. Appl. Sci. 2021, 11, 6100. [Google Scholar] [CrossRef]
- Zhang, Y.; Choi, J.P.; Moon, S.K. Effect of Geometry on the Mechanical Response of Additively Manufactured Polymer. Polym. Test. 2021, 100, 107245. [Google Scholar] [CrossRef]
- Řehounek, L.; Jíra, A. Mesh Generation and Mechanical Tests of Basic Element Cells of Porous Structures. Acta Polytech. CTU Proc. 2022, 34, 80–84. [Google Scholar] [CrossRef]
- Yang, L.; Harrysson, O.; Cormier, D.; West, H.; Gong, H.; Stucker, B. Additive Manufacturing of Metal Cellular Structures: Design and Fabrication. JOM 2015, 67, 608–615. [Google Scholar] [CrossRef]
- Tao, W.; Leu, M.C. Design of Lattice Structure for Additive Manufacturing. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; IEEE: New York, NY, USA, 2016; pp. 325–332. [Google Scholar]
- Benedetti, M.; du Plessis, A.; Ritchie, R.O.; Dallago, M.; Razavi, S.M.J.; Berto, F. Architected Cellular Materials: A Review on Their Mechanical Properties towards Fatigue-Tolerant Design and Fabrication. Mater. Sci. Eng. R Rep. 2021, 144, 100606. [Google Scholar] [CrossRef]
- Bhate, D.; Penick, C.; Ferry, L.; Lee, C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs 2019, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Duarte, I.; Peixinho, N.; Andrade-Campos, A.; Valente, R. Special Issue on Cellular Materials. Sci. Technol. Mater. 2018, 30, 1–3. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Ismail, S.O.; Adebiyi, A.V.; Omigbodun, F.T.; Olawumi, M.A.; Olawade, D.B. Nanostructural Interface and Strength of Polymer Composite Scaffolds Applied to Intervertebral Bone. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127190. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O.; Olawade, D.B. Recent Advances in Biopolymeric Composite Materials: Future Sustainability of Bone-Implant. Renew. Sustain. Energy Rev. 2021, 150, 111505. [Google Scholar] [CrossRef]
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.-Y. A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Omigbodun, F.T. A Systematic Review of Polymer Composite in Biomedical Engineering. Eur. Polym. J. 2021, 154, 110534. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Ismail, S.O.; Ikumapayi, O.M.; Karagiannidis, P.G. Impact of RGO-Coated PEEK and Lattice on Bone Implant. Colloids Surf. B Biointerfaces 2022, 216, 112583. [Google Scholar] [CrossRef]
- Malca, C.; Santos, C.; Sena, M.; Mateus, A. Development of SLM Cellular Structures for Injection Molds Manufacturing. Sci. Technol. Mater. 2018, 30, 13–22. [Google Scholar] [CrossRef]
- PTC Help Center. Available online: https://support.ptc.com/help/creo/creo_pma/r9.0/usascii/index.html#page/part_modeling/part_modeling/About_Lattice_Feature.html (accessed on 5 December 2022).
- Abueidda, D.W.; Elhebeary, M.; Shiang, C.-S.A.; Pang, S.; Abu Al-Rub, R.K.; Jasiuk, I.M. Mechanical Properties of 3D Printed Polymeric Gyroid Cellular Structures: Experimental and Finite Element Study. Mater. Des. 2019, 165, 107597. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Kayode, J.F.; Karagiannidis, P.; Naveed, N.; Mehrabi, H.; Ogundipe, K.O. Polymeric Composites of Cubic-Octahedron and Gyroid Lattice for Biomimetic Dental Implants. Mater. Chem. Phys. 2022, 289, 126454. [Google Scholar] [CrossRef]
- Rinanto, A.; Nugroho, A.; Prasetyo, H.; Pujiyanto, E. Simultaneous Optimization of TensileStrength, Energy Consumption and Processing Time on FDM Process Using Taguchi and PCR-TOPSIS. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Bali, Indonesia, 18–19 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Mwema, F.M.; Akinlabi, E.T. Basics of Fused Deposition Modelling (FDM). In Fused Deposition Modeling; Springer International Publishing: Cham, Germany, 2020; pp. 1–15. ISBN 9783030482589. [Google Scholar]
- Su, A.; Al’Aref, S.J. History of 3D Printing. In 3D Printing Applications in Cardiovascular Medicine; Al’Aref, S.J., Mosadegh, B., Dunham, S., Min, J.K., Eds.; Elsevier: San Diego, CA, USA, 2018; pp. 1–10. ISBN 9780128039175. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Kozior, T.; Mamun, A.; Trabelsi, M.; Sabantina, L. Comparative Analysis of Polymer Composites Produced by FFF and PJM 3D Printing and Electrospinning Technologies for Possible Filter Applications. Coatings 2022, 12, 48. [Google Scholar] [CrossRef]
- Abilgaziyev, A.; Kulzhan, T.; Raissov, N.; Ali, M.H.; Match, W.L.K.O.; Mir-Nasiri, N. Design and Development of Multi-Nozzle Extrusion System for 3D Printer. In Proceedings of the 2015 International Conference on Informatics, Electronics & Vision (ICIEV), Nagoya, Japan, 15–18 June 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Daminabo, S.C.; Goel, S.; Grammatikos, S.A.; Nezhad, H.Y.; Thakur, V.K. Fused Deposition Modeling-Based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems. Mater. Today Chem. 2020, 16, 100248. [Google Scholar] [CrossRef]
- Bi, Z.; Wang, X. Computer Aided Design and Manufacturing; Wiley: Hoboken, NJ, USA, 2020; ISBN 9781119534211. [Google Scholar]
- Vukašinović, N.; Duhovnik, J. Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-Engineering; Springer International Publishing: Cham, Germany, 2019; ISBN 9783030023980. [Google Scholar]
- Crelin, J. Salem Press Principles of Computer-Aided Design; Grey House Publishing: Amenia, NY, USA, 2022; ISBN 9781637000977. [Google Scholar]
- Yue, T.-X. Surface Modeling: High Accuracy and High Speed Methods, 1st ed.; CRC Press: London, England, 2017; ISBN 9781138075672. [Google Scholar]
- Vodilka, A. Analýza Voľného Odpruženia Hliníkových Výliskov a Rekonštrukcia Výlisku Po Lisovacej Operácií. Prešov. Master’s Thesis, Technická Univerzita v Košiciach, Fakulta Výrobných Technológií so Sídlom v Prešove, Prešov, Slovakia, 2020. [Google Scholar]
- Wang, W. Reverse Engineering: Technology of Reinvention; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781439806302. [Google Scholar]
- Yoo, D.-J.; Kwon, H.-H. Shape Reconstruction, Shape Manipulation, and Direct Generation of Input Data from Point Clouds for Rapid Prototyping. Int. J. Precis. Eng. Manuf. 2009, 10, 103–113. [Google Scholar] [CrossRef]
- Amroune, S.; Belaadi, A.; Menaseri, M.; Geroski, N.; Mohamad, B.; Saada, K.; Benyettou, R. Manufacturing of Rapid Prototypes of Mechanical Parts Using Reverse Engineering and 3d Printing. J. Serbian Soc. Comput. Mech. 2021, 15, 167–176. [Google Scholar] [CrossRef]
- Coll, A.; Dadvand, P.; Oñate, E. Robust Volume Mesh Generation for Non-Watertight Geometries; Monographs of the International Centre for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2014. [Google Scholar]
- Arslanbekov, R.; Kolobov, V.; Frolova, A. Analysis of Compressible Viscous Flow Solvers with Adaptive Cartesian Mesh. In Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011; American Institute of Aeronautics and Astronautics: Reston, Virigina, 2011. [Google Scholar]
- Micheletti, S.; Perotto, S.; Soli, L. Topology Optimization Driven by Anisotropic Mesh Adaptation: Towards a Free-Form Design. Comput. Struct. 2019, 214, 60–72. [Google Scholar] [CrossRef]
- Feuillet, R.; Loseille, A.; Alauzet, F. Mesh Adaptation for the Embedded Boundary Method in CFD; National Institute for Research in Computer Science and Control: Le Chesnay, France, 2019. [Google Scholar]
- Zhao, X.; Conley, R.; Ray, N.; Mahadevan, V.S.; Jiao, X. Conformal and Non-Conformal Adaptive Mesh Refinement with Hierarchical Array-Based Half-Facet Data Structures. Procedia Eng. 2015, 124, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Ju, T. Fixing Geometric Errors on Polygonal Models: A Survey. J. Comput. Sci. Technol. 2009, 24, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Fudos, I.; Ntousia, M.; Stamati, V.; Charalampous, P.; Kontodina, T.; Kostavelis, I.; Tzovaras, D.; Bilalis, L. A Characterization of 3D Printability. Comput. Aided Des. Appl. 2021, 18, 1279–1295. [Google Scholar] [CrossRef]
- Hallmann, M.; Goetz, S.; Schleich, B. Mapping of GD&T Information and PMI between 3D Product Models in the STEP and STL Format. Comput. Aided Des. 2019, 115, 293–306. [Google Scholar] [CrossRef]
- Garimella, R.V.; Kim, J.; Berndt, M. Polyhedral Mesh Generation and Optimization for Non-Manifold Domains. In Proceedings of the 22nd International Meshing Roundtable, Orlando, FL, USA, 13–16 October 2013; Springer International Publishing: Cham, Germany, 2014; pp. 313–330, ISBN 9783319023342. [Google Scholar]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, W.; Sheng, W.; Zhao, X. A Frame of 3D Printing Data Generation Method Extracted from CT Data. Sens. Imaging 2018, 19, 12. [Google Scholar] [CrossRef]
- Wagner, M.; Labsik, U.; Greiner, G. Repairing Non-Manifold Triangle Meshes Using Simulated Annealing. Int. J. Shape Model. 2003, 9, 137–153. [Google Scholar] [CrossRef]
- Ciobota, N.D. Nastase-Dan Standard Tessellation Language in Rapid Prototyping Technology. Sci. Bull. Valahia Univ. 2013, 7, 81–85. [Google Scholar]
- Prajapati, M.J.; Bhat, C.; Kumar, A.; Verma, S.; Lin, S.-C.; Jeng, J.-Y. Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates. Materials 2022, 15, 7954. [Google Scholar] [CrossRef]
- Maskery, I.; Sturm, L.; Aremu, A.O.; Panesar, A.; Williams, C.B.; Tuck, C.J.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing. Polymer 2017, 152, 62–71. [Google Scholar] [CrossRef]
- Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019, 183, 108137. [Google Scholar] [CrossRef]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the Italian Chapter Conference, Salerno, Italy, 2–4 July 2008. [Google Scholar]
- 3D Builder User’s Manual. Available online: https://www.microsoft.com/en-us/3d-print/3d-builder-users-guide (accessed on 5 December 2022).
Accuracy | Very Low | Low | Medium | High | Very High |
STL file size [kB] | 4856 | 6145 | 55,416 | 66,524 | 70,477 |
Number of triangles | 99,434 | 125,840 | 1,134,910 | 1,362,396 | 1,443,086 |
Minimum deviation [mm] | −0.82 | −0.33 | −1.36 | −1.65 | 0 |
Maximum deviation [mm] | 2.67 | 0.91 | 2.10 | 2.93 | 0 |
Deviation Range [mm] | 3.48 | 1.24 | 3.46 | 4.58 | 0 |
Sigma [mm] | 0.03 | 0.02 | 0.01 | 0.01 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodilka, A.; Koroľ, M.; Kočiško, M.; Zajac, J. Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology. Polymers 2023, 15, 1198. https://doi.org/10.3390/polym15051198
Vodilka A, Koroľ M, Kočiško M, Zajac J. Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology. Polymers. 2023; 15(5):1198. https://doi.org/10.3390/polym15051198
Chicago/Turabian StyleVodilka, Adrián, Martin Koroľ, Marek Kočiško, and Jozef Zajac. 2023. "Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology" Polymers 15, no. 5: 1198. https://doi.org/10.3390/polym15051198
APA StyleVodilka, A., Koroľ, M., Kočiško, M., & Zajac, J. (2023). Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology. Polymers, 15(5), 1198. https://doi.org/10.3390/polym15051198