Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Technique of Me/pHEMA-gr-PVP Composites
2.3. Measurements and Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Physico-Mechanical Characteristics of Me/pHEMA-gr-PVP Copolymers
2.3.3. Determination of Heat Resistance
2.3.4. Study of Chemical Resistance in Aggressive Media
2.3.5. Conductivity
3. Results and Discussion
3.1. Sorption and Physico-Mechanical Properties of Me/pHEMA-gr-PVP Copolymers
3.2. Chemical Stability of pHEMA-gr-PVP Copolymers
3.3. Electrical Conductivity of Me/pHEMA-gr-PVP Copolymers
3.3.1. Effect of Moisture on Electrical Conductivity of Me/pHEMA-gr-PVP Copolymers
3.3.2. Dependence of Electrical Conductivity of Me/pHEMA-gr-PVP Copolymers on pH Medium
3.3.3. Effect of the Presence of Low Molecular Weight Substances on the Electrical Conductivity of Me/pHEMA-gr-PVP Copolymers
3.3.4. Effect of Load on Changes in the Electrical Conductivity of Hydrogels Based on Me/pHEMA-gr-PVP Copolymers
3.3.5. Effect of Temperature on the Electrical Conductivity of Me/pHEMA-gr-PVP Copolymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawel, K.; Barriet, D.; Sletmoen, M.; Stokke, B.T. Responsive hydrogels for label-free signal transduction within biosensors. Sensors 2010, 10, 4381–4409. [Google Scholar] [CrossRef] [PubMed]
- Torres-Mapa, M.L.; Singh, M.; Simon, O.; Mapa, J.L.; Machida, M.; Günther, A.; Roth, B.; Heinemann, D.; Terakawa, M.; Heisterkamp, A. Fabrication of a monolithic lab-on-a-chip platform with integrated hydrogel waveguides for chemical sensing. Sensors 2019, 19, 4333. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Yao, D.; Yang, L. Soft bimodal sensor array based on conductive hydrogel for driving status monitoring. Sensors 2020, 20, 1641. [Google Scholar] [CrossRef]
- Koerner, J.; Leu, H.-Y.; Magda, J.; Reiche, C.F.; Solzbacher, F. Fast-reacting smart hydrogel-based sensor platform for biomedical applications. TechConnect Briefs 2018, 3, 206–208. [Google Scholar]
- Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous polyacrylamide hydrogels: Preparation and properties. Vopr. Khimii Khimicheskoi Tekhnologii 2016, 5–6, 78–86. [Google Scholar]
- Suberlyak, O.; Melnyk, Y.; Baran, N. High-hydrophilic membranes for dialysis and hemodialysis. Eng. Biomater. 2007, 63, 18–19. [Google Scholar]
- Majcher, M.J.; Hoare, T. Applications of hydrogels. In Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 453–490. [Google Scholar] [CrossRef]
- Bercea, M. Bioinspired hydrogels as platforms for life-science applications: Challenges and opportunities. Polymers 2022, 14, 2365. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel trends in hydrogel development for biomedical applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- Rumon, M.M.H.; Akib, A.A.; Sultana, F.; Moniruzzaman, M.; Niloy, M.S.; Shakil, M.S.; Roy, C.K. Self-healing hydrogels: Development, biomedical applications, and challenges. Polymers 2022, 14, 4539. [Google Scholar] [CrossRef]
- Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol. 2017, 11, 449–453. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, M.; Zhang, Y.; Yin, J.; Pei, R. Nanocomposite hydrogels for tissue engineering applications. Nanoscale 2020, 12, 14976–14995. [Google Scholar] [CrossRef] [PubMed]
- Bukartyk, M.M.; Nosova, N.G.; Maikovych, O.V.; Bukartyk, N.M.; Stasiuk, A.V.; Dron, I.A.; Fihurka, N.V.; Khomyak, S.V.; Ostapiv, D.D.; Vlizlo, V.V.; et al. Preparation and research of properties of combined alginate/gelatin hydrogels. J. Chem. Technol. 2022, 30, 11–20. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Boere, K.W.M.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014, 190, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Willersinn, J.; Schmidt, B.V.K.J. Self-Assembly of double hydrophilic poly(2-ethyl-2-oxazoline)-b-poly(N-vinylpyrrolidone) block copolymers in aqueous solution. Polymers 2017, 9, 293. [Google Scholar] [CrossRef]
- Tudor, A.; Florea, L.; Gallagher, S.; Burns, J.; Diamond, D. Poly(ionic liquid) semi-interpenetrating network multi-responsive hydrogels. Sensors 2016, 16, 219. [Google Scholar] [CrossRef]
- Guenther, M.; Wallmersperger, T.; Gerlach, G. Piezoresistive chemical sensors based on functionalized hydrogels. Chemosensors 2014, 2, 145–170. [Google Scholar] [CrossRef]
- Erfkamp, J.; Guenther, M.; Gerlach, G. Hydrogel-based sensors for ethanol detection in alcoholic beverages. Sensors 2019, 19, 1199. [Google Scholar] [CrossRef]
- Porter, T.L.; Stewart, R.; Reed, J.; Morton, K. Models of hydrogel swelling with applications to hydration sensing. Sensors 2007, 7, 1980–1991. [Google Scholar] [CrossRef]
- Kroh, C.; Wuchrer, R.; Steinke, N.; Guenther, M.; Gerlach, G.; Härtling, T. Hydrogel-based plasmonic sensor substrate for the detection of ethanol. Sensors 2019, 19, 1264. [Google Scholar] [CrossRef]
- Juska, V.B.; Pemble, M.E. A Critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef] [PubMed]
- Mesch, M.; Zhang, C.; Braun, P.V.; Giessen, H. Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2015, 2, 475–480. [Google Scholar] [CrossRef]
- Erfkamp, J.; Guenther, M.; Gerlach, G. Piezoresistive hydrogel-based sensors for the detection of ammonia. Sensors 2019, 19, 971. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zheng, C.; Zhang, L.; Liu, Z.; Song, F.; Li, X.; Zhang, Y.; Wang, Y. A Remote sensor system based on TDLAS technique for ammonia leakage monitoring. Sensors 2021, 21, 2448. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishio, I.; Sun, S.-T.; Ueno-Nishio, S. Collapse of gels in an electric-field. Science 1982, 218, 467–469. [Google Scholar] [CrossRef]
- Suzuki, A.; Tanaka, T. Phase-transition in polymer gels induced by visible-light. Nature 1990, 346, 345–347. [Google Scholar] [CrossRef]
- Lee, W.F.; Yuan, W.Y. Thermoreversible hydrogels X: Synthesis and swelling behavior of the (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate) copolymeric hydrogels. J. Appl. Polym. Sci. 2000, 77, 1760–1768. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, M.; Cai, Y.; Zimniewska, M.; Li, D.; Wei, Q. A Dual-mode wearable sensor based on bacterial cellulose reinforced hydrogels for highly sensitive strain/pressure sensing. Adv. Electron. Mater. 2019, 6, 1900934. [Google Scholar] [CrossRef]
- Kelb, C.; Körner, M.; Prucker, O.; Rühe, J.; Reithmeier, E.; Roth, B. PDMAA hydrogel coated U-bend humidity sensor suited for mass-production. Sensors 2017, 17, 517. [Google Scholar] [CrossRef]
- Buchberger, A.; Peterka, S.; Coclite, A.M.; Bergmann, A. Fast optical humidity sensor based on hydrogel thin film expansion for harsh environment. Sensors 2019, 19, 999. [Google Scholar] [CrossRef]
- Ferrari, L.; Rovati, L.; Fabbri, P.; Pilati, F. Disposable fluorescence optical pH sensor for near neutral solutions. Sensors 2013, 13, 484–499. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Braun, P.V.; Lee, W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Actuators B Chem. 2010, 150, 183–190. [Google Scholar] [CrossRef]
- Tavakoli, J.; Tang, Y. Hydrogel based sensors for biomedical applications: An updated review. Polymers 2017, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yim, S.-G.; Lee, G.W.; Kim, S.; Kim, H.S.; Hwang, D.Y.; An, B.-S.; Lee, J.H.; Seo, S.; Yang, S.Y. Self-adherent biodegradable gelatin-Based hydrogel electrodes for electrocardiography monitoring. Sensors 2020, 20, 5737. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Qin, J.; Li, W.; Tyagi, A.; Liu, Z.; Hossain, M.D.; Chen, H.; Kim, J.-K.; Liu, H.; Zhuang, M.; et al. A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 2019, 7, 27099–27109. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, Z.; Huang, X.; Huang, W. Hydrogel-based composites: Unlimited platforms for biosensors and diagnostics. View 2021, 2, 20200165. [Google Scholar] [CrossRef]
- Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. East. Eur. J. Enterp. Technol. 2018, 3, 40–47. [Google Scholar] [CrossRef]
- Nicolais, L.; Carotenuto, G. Metal-Polymer Nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Moravskyi, V.; Dziaman, I.; Suberliak, S.; Grytsenko, O.; Kuznetsova, M. Features of the production of metal-filled composites by metallization of polymeric raw materials. In Proceedings of the 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, 10–15 September 2017; IEEE: Odessa, Ukraine, 2017. [Google Scholar] [CrossRef]
- Le Droumaguet, B.; Poupart, R.; Guerrouache, M.; Carbonnier, B.; Grande, D. Metallic nanoparticles adsorbed at the pore surface of polymers with various porous morphologies: Toward hybrid materials meant for heterogeneous supported catalysis. Polymers 2022, 14, 4706. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič, V. Usage of mathematical modeling and optimization in development of hydrogel medical dressings production. Electronics 2021, 10, 620. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, Y.; Chou, K.C.; Hou, X. Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors. Int. J. Miner. Metall Mater. 2021, 28, 1030–1037. [Google Scholar] [CrossRef]
- Burkeev, M.Z.; Shibayeva, S.R.; Khamitova, T.O.; Plocek, J.; Tazhbayev, Y.M.; Davrenbekov, S.Z.; Nurmaganbetova, M.T.; Kazhmuratova, A.T.; Zhumagalieva, T.S.; Kezdikbayeva, A.T. Synthesis and catalytic properties of new polymeric monometallic composites based on copolymers of polypropylene glycol maleate phthalate with acrylic acid. Polymers 2021, 13, 4369. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, E.S.; Al-Deyab, S.S. Electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite. Int. J. Biol. Macromol. 2014, 69, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int. 2016, 65, 1365–1372. [Google Scholar] [CrossRef]
- Grytsenko, O.; Dulebova, L.; Spišák, E.; Berezhnyy, B. New Materials Based on Polyvinylpyrrolidone-Containing Copolymers with Ferromagnetic Fillers. Materials 2022, 15, 5183. [Google Scholar] [CrossRef]
- Malesic, N.; Rusmirovic, J.; Jovasevic, J.; Perisic, M.; Dimitrijevic-Brankovic, S.; Filipovic, J.; Tomic, S. Antimicrobial hydrogels based on 2-hydroxyethyl methacrylate and itaconic acid containing silver(i) ion. Tehnika 2014, 69, 563–568. [Google Scholar] [CrossRef]
- Prasitsilp, M.; Siriwittayakorn, T.; Molloy, R.; Suebsanit, N.; Siriwittayakorn, P.; Veeranondha, S. Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. J. Mater. Sci. Mater. Med. 2003, 14, 595–600. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W. Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels. Eur. Polym. J. 2005, 41, 1143–1151. [Google Scholar] [CrossRef]
- Dawgul, M.; Pijanowska, D.G.; Krzyskow, A.; Kruk, J.; Torbicz, W. An influence of polyHEMA gate layer on properties of ChemFETs. Sensors 2003, 3, 146–159. [Google Scholar] [CrossRef]
- Skorokhoda, V. Matrix polymerization of 2-Hydroxyethylmethacrylate in the presence of polyvinylpyrrolidone in permanent magnetic field. Chem. Chem. Technol. 2010, 4, 191–196. [Google Scholar] [CrossRef]
- Krasinskyi, V.; Jachowicz, T.; Dulebova, L.; Gajdos, I.; Malinowski, R. The manufacturing of composite materials in the matrix of modified phenol-formaldehyde resins. Adv. Sci. Technol. Res. J. 2021, 15, 267–272. [Google Scholar] [CrossRef]
- Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018; pp. 136–214. [Google Scholar] [CrossRef]
- Suberlyak, O.; Grytsenko, O.; Kochubei, V. The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chem. Chem. Technol. 2015, 9, 429–434. [Google Scholar] [CrossRef]
- Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials 2020, 13, 4580. [Google Scholar] [CrossRef] [PubMed]
- Grytsenko, O.M.; Naumenko, O.P.; Suberlyak, O.V.; Dulebova, L.; Berezhnyy, B.V. Optimization of the technological parameters of the graft copolymerization of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii Khimicheskoi Tekhnologii 2020, 1, 25–32. [Google Scholar] [CrossRef]
- Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation features of tubular products on the basis of composite hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. [Google Scholar] [CrossRef]
- Grytsenko, O.; Pukach, P.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. The Scheffe’s method in the study of mathematical model of the polymeric hydrogels composite structures optimization. Math. Model. Comput. 2019, 6, 258–267. [Google Scholar] [CrossRef]
- ASTM. D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: Conshohocken, PA, USA, 2021. [CrossRef]
- ISO 306:2022; Plastics—Thermoplastic materials—Determination of Vicat Softening Temperature. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/82176.html (accessed on 1 November 2022).
- ISO 175:2010; Plastics—Methods of test for the determination of the effects of immersion in liquid chemicals. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/55483.html (accessed on 1 September 2010).
- ASTM D4496-21; Standard Test Method for D-C Resistance or Conductance of Moderately Conductive Materials. ASTM International: Conshohocken, PA, USA, 2021. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grytsenko, O.; Dulebova, L.; Spišák, E.; Pukach, P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers 2023, 15, 2259. https://doi.org/10.3390/polym15102259
Grytsenko O, Dulebova L, Spišák E, Pukach P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers. 2023; 15(10):2259. https://doi.org/10.3390/polym15102259
Chicago/Turabian StyleGrytsenko, Oleksandr, Ludmila Dulebova, Emil Spišák, and Petro Pukach. 2023. "Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors" Polymers 15, no. 10: 2259. https://doi.org/10.3390/polym15102259
APA StyleGrytsenko, O., Dulebova, L., Spišák, E., & Pukach, P. (2023). Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers, 15(10), 2259. https://doi.org/10.3390/polym15102259