Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermal Characteristics of PHB/Chitosan Compositions with Encapsulated DPD Exposed in an Aqueous Medium
3.1.1. Binary Composition of PHB/Chitosan
3.1.2. The Ternary System of PHB/Chitosan/Drug
3.1.3. Hydrated Binary System PHB/Chitosan
3.1.4. Hydrated Ternary System PHB/Chitosan/DPD
3.2. Dynamic Characteristics of the Amorphous Phase of Mixed Compositions of PHB/Chitosan with Encapsulated DPD after Exposure to an Aqueous Medium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luzi, F.; Puglia, D.; Torre, L. Natural fiber biodegradable composites and nanocomposites: A biomedical application. In Biomass, Biopolymer-Based Materials, and Bioenergy Construction, Biomedical, and Other Industrial Applications; Woodhead Publishing Series in Composites Science and Engineering: Kidlington, UK, 2019; Chapter 10; pp. 179–201. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Corsi, I.; Venditti, I.; Trotta, F.; Punta, C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. Sci. Total Environ. 2023, 864, 161181. [Google Scholar] [CrossRef] [PubMed]
- Kalita, N.K.; Hakkarainen, M. Integrating biodegradable polyesters in a circular economy. Curr. Opin. Green Sustain. Chem. 2023, 40, 100751. [Google Scholar] [CrossRef]
- Morsada, Z.; Hossain, M.; Islam, M.T.; Mobin, M.A.; Saha, S. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Appl. Mater. 2021, 25, 101257. [Google Scholar] [CrossRef]
- Cheng, J.; Jacquin, B.J.; Pujo-Pay, M.; Meistertzheim, A.L. Biodegradability under marine conditions of bio-based and petroleum-based polymers as substitutes of conventional microparticles. Polym. Degrad. Stab. 2022, 206, 110159. [Google Scholar] [CrossRef]
- Briassoulis, D.; Tserotas, P.; Athanasoulia, L.G. Alternative optimization routes for improving the performance of poly(3-hydroxybutyrate) (PHB) based plastics. J. Clean. Prod. 2021, 318, 128555. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A comprehensive review on polylactic acid (PLA)—Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef]
- Chen, S.; Tian, H.; Mao, J.; Ma, F.; Zhang, M.; Chen, F.; Yang, P. Preparation and application of chitosan-based medical electrospun nanofibers. Int. J. Biol. Macromol. 2023, 226, 410–422. [Google Scholar] [CrossRef]
- Price, S.; Kuzhiumparambil, U.; Pernice, M.; Ralph, P. Techno-economic analysis of cyanobacterial PHB bioplastic production. J. Environ. Chem. Eng. 2022, 10, 107502. [Google Scholar] [CrossRef]
- Palmeiro-Sanchez, T.; O’Flaherty, V.; Lens, P.N.L. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef]
- Jost, V.; Langowski, H.-C. Effect of different plasticisers on the mechanical and barrier properties of extruded cast PHBV films. Eur. Polym. J. 2015, 68, 302–312. [Google Scholar] [CrossRef]
- Eraslan, K.; Aversa, C.; Nofar, M.; Barletta, M.; Gisario, A.; Salehiyan, R.; Goksu, Y.A. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): Synthesis, properties, and applications—A review. Eur. Polym. J. 2022, 167, 111044. [Google Scholar] [CrossRef]
- Martin, D.P.; Williams, S.F. Medical applications of poly-4-hydroxybutyrate: A strong flexible absorbable biomaterial. Biochem. Eng. J. 2003, 16, 97–105. [Google Scholar] [CrossRef]
- Mirmusavi, M.H.; Zadehnajar, P.; Semnani, D.; Karbasi, S.; Fekrat, F.; Heidari, F. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nanomicro composite scaffold for cartilage tissue engineering applications. Int. J. Biol. Macromol. 2019, 132, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Boisseaux, P.; Hopkinson, P.; Santillo, D.; Smith, C.; Garmulewicz, A.; Powel, Z.; Galloway., T. Environmental safety of second and third generation bioplastics in the context of the circular economy. Ecotoxicol. Environ. Saf. 2023, 256, 114835. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.S.; Sharifianjazi, F.; Esmaeilkhanian, A.; Salehi, E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr. Polym. 2021, 273, 118631. [Google Scholar] [CrossRef]
- Ahmad, A.; Mubarak, N.M.; Naseem, K.; Tabassum, H.; Rizwan, M.; Najda, A.; Kashif, M.; Bin-Jumah, M.; Hussain, A.; Shaheen, A.; et al. Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arab. J. Chem. 2020, 13, 8935–8964. [Google Scholar] [CrossRef]
- Florez, M.; Guerra-Rodríguez, E.; Cazon, P.; Vazquez, M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Cheng, Q.; Li, Z. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere 2021, 279, 130927. [Google Scholar] [CrossRef]
- Ivantsova, E.L.; Iordanskii, A.L.; Kosenko, R.Y.; Rogovina, S.Z.; Grachev, A.V.; Prut, E.V. Poly(3-hydroxybutyrate)-chitosan: A new biodegradable composition for prolonged delivery of biologically active substances. Pharm. Chem. J. 2011, 45, 51–55. [Google Scholar] [CrossRef]
- Zhuikova, Y.V.; Zhuikov, V.; Varlamov, V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers 2022, 14, 5549. [Google Scholar] [CrossRef] [PubMed]
- Rogovina, S.; Zhorina, L.; Yakhina, A.; Shapagin, A.V.; Iordanskii, A.L.; Berlin, A.A. Hydrolysis, Biodegradation and Ion Sorption in Binary Biocomposites of Chitosan with Polyesters: Polylactide and Poly(3-Hydroxybutyrate). Polymers 2023, 15, 645. [Google Scholar] [CrossRef]
- Ma, L.; Shi, X.; Zhang, X.; Li, L. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids Surf. A 2019, 583, 123956. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Cvetnić, M.; Kušić, H.; Bolanča, T.; Kučić Grgić, D.; Ukić, Š. Potential of Advanced Oxidation as Pretreatment for Microplastics Biodegradation. Separations 2023, 10, 132. [Google Scholar] [CrossRef]
- Olkhov, A.A.; Karpova, S.G.; Tyubaeva, P.M.; Zhulkina, A.; Zernova, Y.N.; Iordanskii, A.L. Effect of Ozone and Ultraviolet Radiation on Structure of Fibrous Materials Based on Poly(3-hydroxybutyrate) and Polylactide. Inorg. Mater. Appl. Res. 2020, 11, 1130–1136. [Google Scholar] [CrossRef]
- Kucera, F.; Petrusa, J.; Jancara, J. The structure-hydrolysis relationship of poly(3-hydroxybutyrate). Polym. Test. 2019, 80, 106095. [Google Scholar] [CrossRef]
- Karpova, S.G.; Ol’khov, A.A.; Popov, A.A.; Zhulkina, A.L.; Kosenko, R.Y.; Iordanskii, A.L. Study of the Effect of External Factors on the Structural and Dynamic Parameters of Film Materials Based on Poly(3-Hydroxybutyrate) and Polyactide. Nanobiotechnol. Rep. 2021, 16, 211–221. [Google Scholar] [CrossRef]
- Aversa, C.; Barletta, V.; Cappiello, G.; Gisario, A. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Eur. Polym. J. 2022, 173, 111304. [Google Scholar] [CrossRef]
- Kervran, M.; Vagner, C.; Cochez, M.; Ponçot, M.; Reza Saeb, M.; Vahabi, H. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review. Polym. Degrad. Stab. 2022, 201, 109995. [Google Scholar] [CrossRef]
- Medvecky, L.; Giretova, M.; Stulajterova, R. Properties and in vitro characterization of polyhydroxybutyrate–chitosan scaffolds prepared by modified precipitation method. J. Mater. Sci. Mater. Med. 2014, 25, 777–789. [Google Scholar] [CrossRef]
- Toloue, E.B.; Karbasia, S.; Salehi, H.; Rafienia, M. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater. Sci. Eng. 2019, 99, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Monteiro, M.J.; Jia, Z. Stable organic radical polymers: Synthesis and applications. Polym. Chem. 2016, 7, 5589–5614. [Google Scholar] [CrossRef]
- Khalida, M.N.; Agnelya, F.; Yagoubib, N.; Grossiorda, J.L.; Couar, G. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur. J. Pharm. Sci. 2002, 15, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Dresvyanina, E.N.; Grebennikov, S.F.; Elokhovskii, V.Y.; Dobrovolskaya, I.P.; Ivan’Kova, E.M.; Yudin, V.E.; Heppe, K.; Morganti, P. Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydr. Polym. 2020, 245, 116552. [Google Scholar] [CrossRef] [PubMed]
- Karpova, S.G.; Ol’Khov, A.A.; Iordanskii, A.L.; Lomakin, S.M.; Shilkina, N.S.; Popov, A.A.; Berlin, A.A. Nonwoven blend composites based on poly(3-hydroxybutyrate)–chitosan ultrathin fibers prepared via electrospinning. Polym. Sci.-Ser. A Focus Phys. 2016, 58, 76. [Google Scholar] [CrossRef]
- Gunaratne, L.M.W.K.; Shanks, R.A.; Amarasinghe, G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 2004, 423, 127–135. [Google Scholar] [CrossRef]
- Iordanskii, A.L.; Ol’Khov, A.A.; Karpova, S.G.; Chalykh, A.E.; Berlin, A.A. Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs. Polym. Sci.-Ser. A 2017, 59, 352–362. [Google Scholar] [CrossRef]
- Jeck, S.; Scharfer, P.; Schabel, W.; Kind, M. Water sorption in semicrystalline poly(vinyl alcohol) membranes: In situ characterisation of solvent-induced structural rearrangements. J. Membr. Sci. 2012, 389, 162–172. [Google Scholar] [CrossRef]
- Iordanskii, A.; Karpova, S.; Olkhov, A.; Borovikov, P.; Kildeeva, N.; Liu, Y. Structure-Morphology Impact upon Segmental Dynamics and Diffusion in the Biodegradable Ultrafine Fibers of Polyhydroxy-butyrate-Polylactide blends. Eur. Polym. J. 2019, 19, S0014. [Google Scholar] [CrossRef]
- Shin, S.Y.; Jang, M.; Cheon, H.J.; Go, S.; Yoon, H.; Chang., M. Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing. Sens. Actuators B Chem. 2022, 351, 130951. [Google Scholar] [CrossRef]
- Xiao, H.; Lu, W.; Yeh, J.-T. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J. Appl. Polym. 2009, 113, 112–121. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Siengchin, S.; Shin, G.H.; Kim, J.T. Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Sci. Total Environ. 2023, 878, 163156. [Google Scholar] [CrossRef] [PubMed]
- Kocherbitov, V.; Argatov, I. A thermodynamic theory of sorption in glassy polymers. Polymers 2021, 233, 124195. [Google Scholar] [CrossRef]
- Maurer, M.; Oostenbrink, C. Water in protein hydration and ligand recognition. J. Molec. Recognit. 2019, 32, 2810. [Google Scholar] [CrossRef]
- Jiang, B.; Kasapis, S.; Kontogiorgosc, V. Combined use of the free volume and coupling theories in the glass transition of polysaccharide/co-solute systems. Carbohydr. Polym. 2011, 83, 926–933. [Google Scholar] [CrossRef]
- Klonos, P.; Terzopoulou, Z.; Koutsoumpis, S.; Pissis, P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L–lactic acid) and nano-inclusions of 1-3D geometry. Eur. Polym. J. 2016, 82, 16–34. [Google Scholar] [CrossRef]
- Kamaev, P.P.; Aliev, I.I.; Iordanskii, A.L.; Wasserman, A.M. Molecular dynamics of the spin probes in dry and wet poly(3-hydroxybutyrate) films with different morphology. Polymer 2001, 42, 515–520. [Google Scholar] [CrossRef]
- Vorobiev, A.K.; Bogdanov, A.V.; Yankova, T.S.; Chumakova, N.A. Spin Probe Determination of Molecular Orientation Distribution and Rotational Mobility in Liquid Crystals: Model-Free Approach. J. Phys. Chem. B 2019, 123, 5875–5891. [Google Scholar] [CrossRef]
- Pankova, Y.N.; Shchegolikhin, A.N.; Iordanskii, A.L.; Olkhov, A.A.; Zaikov, G.E. The characterization of novel biodegradable blends based on polyhydroxybutyrate: The role of water transport. J. Mol. Liq. 2010, 156, 65–69. [Google Scholar] [CrossRef]
Initial Composition of PHB/Chitosan | |||||||||
---|---|---|---|---|---|---|---|---|---|
PHB 100% | PHB/chit 80/20% | PHB/chit 70/30% | PHB/chit 50/50% | PHB/chit 40/60% | PHB/chit 30/70% | PHB/chit 20/80% | Chitosan 100% | ||
PHB | χ, % | 52 | 49 | 47 | 43 | 35 | 33 | - | - |
Tm | 157;173 | 155;170 | 155;170 | 156;171 | 152;168 | 153 | - | - | |
Chitosan | ∆H | - | - | 128 | 134 | 186 | 205 | 209 | 285 |
TD | - | - | 85 | 95 | 132 | 98 | 117 | 126 | |
PHB/chitosan with DPD | |||||||||
PHB | χ, % | 54 | 55 | 54 | 45 | 38 | - | 63 | - |
Tm | 153;170 | 153;168 | 153;168 | 151;167 | 151;167 | - | 163 | - | |
Chitosan | ∆H | - | - | 87 | 110 | 101 | 248 | 250 | 333 |
TD | - | - | 85 | 90 | 97 | 96 | 97 | 103 | |
PHB/chitosan in the Aquatic Environment | |||||||||
PHB | χ, % | 58 | 45 | 43 | 41 | 40 | 39 | 39 | - |
Tm | 155;170 | 155;170 | 155;170 | 155;170 | 155;170 | 155;170 | 171 | - | |
Chitosan | ∆H | - | 115 | 130 | 159 | 172 | 172 | 157 | 156 |
TD | - | 87 | 88 | 89 | 90 | 95 | 95 | 95 | |
PHB/chitosan with DPD, in the Aquatic Environment | |||||||||
PHB | χ, % | 80 | 76 | 70 | 66 | 47 | 23 | 25 | |
Tm | 153;170 | 152;169 | 152;169 | 152;168 | 152;168 | 172 | 172 | - | |
Chitosan | ∆H | - | - | 130 | 154 | 163 | 170 | 109 | 110 |
TD | - | - | 85 | 87 | 97 | 92 | 95 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpova, S.G.; Olkhov, A.A.; Varyan, I.A.; Popov, A.A.; Iordanskii, A.L. Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan. Polymers 2023, 15, 2260. https://doi.org/10.3390/polym15102260
Karpova SG, Olkhov AA, Varyan IA, Popov AA, Iordanskii AL. Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan. Polymers. 2023; 15(10):2260. https://doi.org/10.3390/polym15102260
Chicago/Turabian StyleKarpova, S. G., A. A. Olkhov, I. A. Varyan, A. A. Popov, and A. L. Iordanskii. 2023. "Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan" Polymers 15, no. 10: 2260. https://doi.org/10.3390/polym15102260
APA StyleKarpova, S. G., Olkhov, A. A., Varyan, I. A., Popov, A. A., & Iordanskii, A. L. (2023). Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-hydroxybutyrate)-chitosan. Polymers, 15(10), 2260. https://doi.org/10.3390/polym15102260