Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Method
2.2.1. Preparation of EPDM Vulcanizates
2.2.2. Thermal-Oxidative Aging
2.3. Measurements
2.3.1. Vulcanization Characteristics
2.3.2. The Crosslinking Density
2.3.3. Physical Property
2.3.4. Water Contact Angle Test
2.3.5. Aging Coefficient
2.3.6. Attenuated Total Reflection Fourier Transform Infrared Spectrometer (ATR-FTIR) Analysis
2.3.7. Thermogravimetric Analysis
2.3.8. Thermal Degradation Kinetics
3. Results and Discussion
3.1. Vulcanization Characteristics
3.2. Physical Properties and Crosslinking Density
3.3. Aging Coefficient and Retention
3.4. Attenuated Total Reflection Fourier Transform Infrared Spectrometer (ATR-FTIR) Analysis
3.5. Surface Property
3.6. Thermal Degradation Behavior and Kinetic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torrejón, Y.N.; Giese, U.; Hannover. Consumption and reaction mechanisms of antioxidants during thermal oxidative aging. KGK Rubberpoint 2012, 65, 25–31. [Google Scholar]
- Azura, A.R.; Ghazali, S.; Mariatti, M. Effects of the filler loading and aging time on the mechanical and electrical conductivity properties of carbon black filled natural rubber. J. Appl. Polym. Sci. 2008, 110, 747–752. [Google Scholar] [CrossRef]
- Nakazono, T.; Ozaki, A.; Matsumoto, A. Phase separation and thermal aging behavior of styrene-butadiene rubber vulcanizates using liquid polymers as plasticizers studied by differential scanning calorimetry and dynamic mechanical spectroscopy. J. Appl. Polym. Sci. 2011, 120, 434–440. [Google Scholar] [CrossRef]
- Tomer, N.; Delor-Jestin, F.; Singh, R.; Lacoste, J. Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber. Polym. Degrad. Stab. 2007, 92, 457–463. [Google Scholar] [CrossRef]
- Osswald, S.L.B. Influence of different types of antioxidants on the aging behavior of carbon-black filled NR and SBR vulcanizates. Polym. Test. 2019, 79, 106053. [Google Scholar] [CrossRef]
- Baldwin, J.M.; Bauer, D.R.; Ellwood, K.R. Rubber aging in tires. Part 1: Field results. Polym. Degrad. Stab. 2007, 92, 103–109. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kar, S.; Dasgupta, S.; Mukhopadhyay, R.; Chauhan, N.P.; Ameta, S.C.; Bandyopadhyay, S. Effect of Ozone, Thermo, and Thermo-oxidative Aging on the Physical Property of Styrene Butadiene Rubber-Organoclay Nanocomposites. J. Elastomers Plast. 2010, 42, 443–452. [Google Scholar] [CrossRef]
- Wen, H.; Wang, M.; Luo, S.; Zhou, Y.; Liu, T. Aramid fiber reinforced EPDM microcellular foams: Influence of the aramid fiber content on rheological behavior, mechanical properties, thermal properties, and cellular structure. J. Appl. Polym. Sci. 2021, 138, 50531. [Google Scholar] [CrossRef]
- Blivet, C.; Larché, J.-F.; Israëli, Y.; Bussière, P.-O.; Gardette, J.-L. Thermal oxidation of cross-linked PE and EPR used as insulation materials: Multi-scale correlation over a wide range of temperatures. Polym. Test. 2021, 93, 106913. [Google Scholar] [CrossRef]
- Bhattacharya, A.B.; Chatterjee, T.; Naskar, K. Dynamically vulcanized blends of UHM-EPDM and polypropylene: Role of nano-fillers improving thermal and rheological properties. Mater. Today Commun. 2020, 25, 101486. [Google Scholar] [CrossRef]
- Ma, H.; He, J.; Li, X.; Yang, R. High thermal stability and low flammability for Ethylene-Vinyl acetate Monomer/Ethylene-Propylene-Diene Monomer by incorporating macromolecular charring agent. Polym. Adv. Technol. 2021, 6, 32. [Google Scholar] [CrossRef]
- Nordin, R.; Latiff, N.; Yusof, R.; Nawawi, W.I.; Salihin, M.Z.; Ishak, Z.A.M. Effect of several commercial rubber as substrates for zinc oxide in the photocatalytic degradation of methylene blue under visible irradiation. Express Polym. Lett. 2020, 14, 838–847. [Google Scholar] [CrossRef]
- Wang, W.; Qu, B. Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polym. Degrad. Stab. 2003, 81, 531–537. [Google Scholar] [CrossRef]
- Aimura, Y.; Wada, N. Reference materials for weathering tests on rubber products. Polym. Test. 2006, 25, 166–175. [Google Scholar] [CrossRef]
- Barala, S.S.; Manda, V.; Jodha, A.S.; Meghwal, L.R.; Ajay, C.; Gopalani, D. Ethylene-propylene diene monomer-based polymer composite for attenuation of high energy radiations. J. Appl. Polym. Sci. 2020, 138, 50334. [Google Scholar] [CrossRef]
- Zaharescu, T.; Mateescu, C.; Dima, A.; Varca, G.H.C. Evaluation of thermal and radiation stability of EPDM in the presence of some algal powders. J. Therm. Anal. Calorim. 2020, 147, 327–336. [Google Scholar] [CrossRef]
- Yue, T.; Liu, P.; Zhao, H.; Li, S.; Zhang, L.; Liu, J. Chain dynamics evolution of ethylene-propylene-diene monomer in response to hot humid and salt fog environment. J. Appl. Polym. Sci. 2021, 138, 50742. [Google Scholar] [CrossRef]
- Mokhtari, S.; Mohammadi, F.; Nekoomanesh-Haghighi, M. Surface modification of PP-EPDM used in automotive industry by mediated electrochemical oxidation. Iran. Polym. J. 2016, 25, 309–320. [Google Scholar] [CrossRef]
- Rivaton, A.; Cambon, S.; Gardette, J.L. Radiochemical ageing of ethylene-propylene-diene elastomers. 4. Evaluation of some anti-oxidants. Polym. Degrad. Stab. 2006, 91, 136–143. [Google Scholar] [CrossRef]
- Ning, N.; Ma, Q.; Zhang, Y.; Zhang, L.; Wu, H.; Tian, M. Enhanced thermo-oxidative aging resistance of EPDM at high temperature by using synergistic antioxidants. Polym. Degrad. Stab. 2014, 102, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.; Cao, M.S.D.; Liu, H. Synergistic Effects of Amine-Containing Antioxidants on the Aging Performances of Ethylene Propylene Diene Rubber. Chem. Sel. 2020, 5, 4961–4966. [Google Scholar] [CrossRef]
- El-Wakil, A.E.-A.A.; El-Mogy, S.; Halim, S.F.; Abdel-Hakim, A. Enhancement of aging resistance of EPDM rubber by natural rubber-g-N (4-phenylenediamine) maleimide as a grafted antioxidant. J. Vinyl Addit. Technol. 2022, 2, 367–378. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Q.; Liu, L.; Shi, G. Study on the Industrial Process of Rubber Anti-oxidant RD. J. Korean Chem. Soc. 2011, 55, 830–834. [Google Scholar] [CrossRef]
- Li, Z.H.; Chen, S.J.; Zhang, J.; Shi, D.Q. Influence of different antioxidants on cure kinetics and aging behaviours of ethylene propylene diene rubber/low density polyethylene blends. Plast. Rubber Compos. 2013, 38, 187–194. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, Q.; Zeng, S.; Yang, S.; Sun, J.; Liang, J. Effect of Sepiolite on Thermo-oxidative Stability Performance of Reinforced EPDM. J. Mater. Res. 2017, 31, 867–873. [Google Scholar]
- Freeman, E.S.; Carroll, B. The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate. J. Phys. Chem. 1958, 62, 394–397. [Google Scholar] [CrossRef]
- Albano, C.; Marianella, H.; Ichazo, M.N.; González, J.; DeSousa, W. Characterization of NBR/bentonite composites: Vulcanization kinetics and rheometric and mechanical properties. Polym. Bull. 2011, 67, 653–667. [Google Scholar] [CrossRef]
- Hacıoğlu, F.; Özdemir, T.; Çavdar, S.; Usanmaz, A. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment. Radiat. Phys. Chem. 2013, 83, 122–130. [Google Scholar] [CrossRef]
- Chen, W.L.; Chen, H.C.; Tan, J.Z.; Chao, Y.J.; Van Zee, J.W. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources 2011, 196, 1955–1966. [Google Scholar]
- Boukezzi, L.; Boubakeur, A.; Laurent, C.; Lallouani, M. Observations on structural changes under thermal ageing of cross-linked polyethylene used as power cables insulation. Iran. Polym. J. 2008, 17, 611–624. [Google Scholar]
- Zhao, Y.; Ma, Y.; Yao, W.; Huang, B. Styrene-Assisted Grafting of Maleic Anhydride Onto Isotactic Poly butene-1. Polym. Eng. Sci. 2011, 51, 2483–2489. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, Y.; Han, L.; Liu, Z.; Chen, J. Study on DTBP initiated MAH onto polybutene-1 with melt-grafting. J. Polym. Eng. 2012, 32, 567–574. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Y.; Chen, J.; Han, L. Grafting of glycidyl methacrylate onto isotactic polybutene-1 initiated by di-tert-butyl peroxide. J. Elastomers Plast. 2015, 47, 262–276. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Han, L.; Zhao, L. Nonisothermal crystallization kinetics of polybutene-1 containing nucleating agent with acid amides structure. J. Polym. Eng. 2014, 34, 53–58. [Google Scholar] [CrossRef]
- Kumar, A.; Commereuc, S.; Verney, V. Ageing of elastomers: A molecular approach based on rheological characterization. Polym. Degrad. Stab. 2004, 85, 751–757. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Gao, J. Surface degradation of ethylene-propylene-diene monomer (EPDM) containing 5-ethylidene-2-norbornene (ENB) as diene in artificial weathering environment. Polym. Degrad. Stab. 2008, 93, 692–699. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Gao, J. Aging of ethylene-propylene-diene monomer (EPDM) in artificial weathering environment. Polym. Degrad. Stab. 2007, 92, 1841–1846. [Google Scholar] [CrossRef]
- Snijders, E.A.; Boersma, A.; van Baarle, B.; Gijsman, P. Effect of dicumyl peroxide cross-linking on the UV stability of ethylene-propylene-diene (EPDM) elastomers containing 5-ethylene-2-norbornene (ENB). Polym. Degrad. Stab. 2005, 89, 484–491. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, S.; Watkins, K.; Wong, C. Electrical approach to monitor the thermal oxidation aging of carbon black filled ethylene propylene rubber. Polym. Degrad. Stab. 2004, 86, 209–215. [Google Scholar] [CrossRef]
- Ozdemir, T. Gamma irradiation degradation/modification of 5-ethylidene 2-norbornene (ENB)-based ethylene propylene diene rubber (EPDM) depending on ENB content of EPDM and type/content of peroxides used in vulcanization. Radiat. Phys. Chem. 2008, 77, 787–793. [Google Scholar] [CrossRef]
- Delor, F.; Teissedre, G.; Baba, M.; Lacoste, J. Ageing of EPDM-2. Role of hydroperoxides in photo-and thermo-oxidation. Polym. Degrad. Stab. 1998, 60, 321–331. [Google Scholar] [CrossRef]
- Bhowmick, A.K.; Konar, J.; Kole, S.; Narayanan, S. Surface properties of EPDM, silicone rubber, and their blend during aging. J. Appl. Polym. Sci. 1995, 57, 631–637. [Google Scholar] [CrossRef]
- Palmas, P.; Le Campion, L.; Bourgeoisat, C.; Martel, L. Curing and thermal ageing of elastomers as studied by 1H broadband and 13C high-resolution solid-state NMR. Polymer 2001, 42, 7675–7683. [Google Scholar] [CrossRef]
- Zaharescu, T.; Podinǎ, C. Radiochemical stability of EPDM. Polym. Test. 2001, 20, 141–149. [Google Scholar] [CrossRef]
- Gamlin, C.; Dutta, N.; Roy-Choudhury, N.; Kehoe, D.; Matisons, J. Influence of ethylene–propylene ratio on the thermal degradation behaviour of EPDM elastomers. Thermochim. Acta 2001, 367, 185–193. [Google Scholar] [CrossRef]
- Gamlin, C.D.; Dutta, N.K.; Choudhury, N.R. Mechanism and kinetics of the isothermal thermodegradation of ethylene-propylene-diene (EPDM) elastomers—ScienceDirect. Polym. Degrad. Stab. 2003, 80, 525–531. [Google Scholar] [CrossRef]
- Assink, R.A.; Gillen, K.T.; Sanderson, B. Monitoring the degradation of a thermally aged EPDM terpolymer by 1H NMR relaxation measurements of solvent swelled samples. Polymer 2002, 43, 1349–1355. [Google Scholar] [CrossRef]
Samples | EPDM phr | N330 phr | Sulfur phr | TMTD phr | ZnO phr | SA phr | KN4006 phr | RD phr | 4010-NA phr |
---|---|---|---|---|---|---|---|---|---|
#1 | 100 | 100 | 1.5 | 1.5 | 5 | 1 | 70 | - | - |
#2 | 100 | 100 | 1.5 | 1.5 | 5 | 1 | 70 | 1 | 2 |
Sample | MH/(N·M) | ML/(N·M) | MH-ML/(N·M) | T10/(min) | T90/(min) | CRI/(min−1) | Tdis/(min) | K | R |
---|---|---|---|---|---|---|---|---|---|
#1 | 20.29 | 2.09 | 18.2 | 1.46 | 12.23 | 9.07 | 1.89 | 0.23 */0.17 | 0.990 */0.998 |
#2 | 18.55 | 2.25 | 16.3 | 0.98 | 11.32 | 9.57 | 1.19 | 0.27 */0.18 | 0.987 */0.997 |
Aging Time/h | 3300 cm−1 | 2960 cm−1 | 1720 cm−1 | 1516 cm−1 | 1432 cm−1 | 1245 cm−1 | #1 1 | #2 1 |
---|---|---|---|---|---|---|---|---|
0 | 200.17 | 1.46 | 2.42 | 40.59 | 1.16 | 24.75 | 2.086 | 0.638 |
24 | 204.51 | 2.11 | 2.71 | 33.6 | 1.13 | 25.14 | 2.398 | 0.638 |
72 | 209.6 | 3.12 | 3.07 | 34.39 | 1.28 | 23.04 | 2.398 | 0.728 |
120 | 213.87 | 3.17 | 3.19 | 21.46 | 1.32 | 19.97 | 2.417 | 0.815 |
168 | 220.48 | 3.39 | 3.77 | 21.06 | 1.48 | 18.62 | 2.547 | 0.867 |
336 | 231.69 | 5.12 | 4.67 | 18.66 | 1.67 | 17.04 | 2.796 | 0.969 |
Samples | 0 h | 24 h | 72 h | 120 h | 168 h | 336 h |
---|---|---|---|---|---|---|
#1 | 104.0 | 105.5 | 97.0 | 95.5 | 93.5 | 91.5 |
#2 | 108.0 | 108.1 | 107.5 | 105.1 | 102.6 | 94.8 |
Aging Time/h | Initial Weight-Loss Temperature/°C | Maximum Weight-Loss Temperature/°C | ||||||
---|---|---|---|---|---|---|---|---|
First Stage | Second Stage | Third Stage | First Stage | Second Stage | Third Stage | |||
#1 | #2 | #1, #2 | #1, #2 | #1 | #2 | #1, #2 | #1, #2 | |
0 | 93 | 101 | 393 | 800 | 245.67 | 253.33 | 479.33 | 1222.33 |
24 | 89 | 100 | 393 | 800 | 244.30 | 257.00 | 479.33 | 1222.33 |
72 | 89 | 107 | 393 | 800 | 298.00 | 283.00 | 479.33 | 1222.33 |
120 | 89 | 97 | 393 | 800 | 300.00 | 313.67 | 480.33 | 1222.33 |
168 | 86 | 89 | 393 | 800 | 318.67 | 306.67 | 480.33 | 1222.33 |
336 | 84 | 87 | 393 | 800 | 325.00 | 327.67 | 479.67 | 1222.33 |
Aging Time/h | Activation Energy E/kJ·mol−1 | The Number of Reaction Stages | R | |||
---|---|---|---|---|---|---|
#1 | #2 | #1 | #2 | #1 | #2 | |
0 | 440.111 | 434.951 | 4.4084 | 4.0562 | 0.96104 | 0.96488 |
24 | 434.981 | 431.557 | 4.1105 | 3.9756 | 0.95935 | 0.9649 |
72 | 426.952 | 411.185 | 4.0395 | 3.9283 | 0.97098 | 0.94975 |
120 | 420.865 | 413.527 | 3.9563 | 3.7456 | 0.9716 | 0.97406 |
168 | 424.908 | 412.543 | 3.9393 | 3.8535 | 0.97151 | 0.96355 |
336 | 418.352 | 405.043 | 3.9443 | 3.7375 | 0.96546 | 0.95589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Chen, Q.; Song, P.; Gong, X.; Chen, J.; Zhao, Y. Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates. Polymers 2023, 15, 2329. https://doi.org/10.3390/polym15102329
Hu Q, Chen Q, Song P, Gong X, Chen J, Zhao Y. Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates. Polymers. 2023; 15(10):2329. https://doi.org/10.3390/polym15102329
Chicago/Turabian StyleHu, Quanchao, Qiang Chen, Peiru Song, Xingyu Gong, Junyi Chen, and Yongxian Zhao. 2023. "Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates" Polymers 15, no. 10: 2329. https://doi.org/10.3390/polym15102329
APA StyleHu, Q., Chen, Q., Song, P., Gong, X., Chen, J., & Zhao, Y. (2023). Performance of Thermal-Oxidative Aging on the Structure and Properties of Ethylene Propylene Diene Monomer (EPDM) Vulcanizates. Polymers, 15(10), 2329. https://doi.org/10.3390/polym15102329