Preparation and Application Progress of Imprinted Polymers
Abstract
:1. Introduction
2. Recognition Principles of Imprinted Polymers
3. Classification of Imprinted Polymers
3.1. Bulk Imprinted Polymers (BIPs)
3.2. Surface Imprinted Polymers (SIPs)
3.3. Epitope-Imprinted Polymers (EIPs)
4. Preparation Progress of Imprinted Polymers
4.1. Thermal Polymerization
4.1.1. Conventional Thermal Polymerization
4.1.2. Other Thermal Polymerization
4.2. Radiation Polymerization
4.2.1. UV Radiation Polymerization
4.2.2. γ-rays Radiation Polymerization
4.2.3. Electron Beam Radiation Polymerization
4.2.4. Other Radiation Polymerization
4.3. Green Polymerization
4.3.1. Bulk Polymerization
4.3.2. Supercritical Carbon Dioxide Polymerization
4.3.3. Ionic Liquids Polymerization
4.3.4. Deep Eutectic Solvent Polymerization
4.3.5. Sol-Gel Polymerization
5. Application Progress of Imprinted Polymers
5.1. Ion-Imprinted Polymers (IIPs)
5.2. Organic Molecular Imprinted Polymers (OMIPs)
5.3. Biomacromolecules Imprinted Polymers (BMIPs)
6. Conclusions and Future Prospects
- (1)
- Intermolecular interaction is the basis for achieving chemical selectivity. However, the current design of interaction between template molecules and functional monomers for ligands is mainly qualitative [12,27,28], which is difficult for the precise construction of imprinting materials. Therefore, quantitative analysis of intermolecular interactions needs to be achieved through computational simulation or other advanced characterization methods.
- (2)
- Cavity matching is the foundation for achieving physical selectivity. However, there is limited research on the nanoscale cavity, which can not reveal the influence of intrinsic cavities inside imprinted materials on selectivity. Therefore, it is necessary to optimize the physical selectivity by utilizing PALS, which is sensitive to the determination of the nanoscale [60,64,99,146,147,148].
- (3)
- Most of the reported MIPs were only investigated with pure template samples or simulated samples, which may not apply in practice, as the practical samples are more complicated. Therefore, the obtained MIPs should be examined with practical samples.
- (4)
- Though the surface imprinting materials and epitope imprinted materials show promising applications, especially for the detection, diagnostics, imaging, and delivery of biomacromolecules, the preparation process is very complicated. For large-scale production and practical application, the synthesis process of these imprinting materials needs optimization.
- (5)
- Though the MIPs have an excellent recognition ability, the adsorption capacity is always very low, and future work needs to be focused on the improvement of adsorption capacity.
- (6)
- Imprinting polymers for metal cations, organic molecules, and biological macromolecules has been well-developed, but there are few reports about imprinting polymers for the recognition and selective separation of anions [120]. Therefore, it is necessary to develop imprinting polymers of anion and establish the structure-performance relationship.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Ramanavicius, A.; Viter, R.; Ramanavicius, S. Molecularly imprinted polymers for the determination of cancer biomarkers. Int. J. Mol. Sci. 2023, 24, 4105. [Google Scholar] [CrossRef] [PubMed]
- Belbruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green strategies for molecularly imprinted polymer development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.K.; Omer, K.M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022, 236, 122878. [Google Scholar] [CrossRef] [PubMed]
- Vlatakis, G.; Andersson, L.I.; Muller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Pichon, V.; Delaunay, N.; Combes, A. Sample preparation using molecularly imprinted polymers. Anal. Chem. 2020, 92, 16–33. [Google Scholar] [CrossRef]
- Pan, J.M.; Chen, W.; Ma, Y.; Pan, G.Q. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef]
- Schirhagl, R. Bioapplications for molecularly imprinted polymers. Anal. Chem. 2014, 86, 250–261. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Porter, R.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Nicholls, I.A.; Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar] [CrossRef]
- Song, Z.H.; Li, J.H.; Lu, W.H.; Li, B.W.; Yang, G.Q.; Bi, Y.; Arabi, M.; Wang, X.Y.; Ma, J.P.; Chen, L.X. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. Trends Anal. Chem. 2022, 146, 116504. [Google Scholar] [CrossRef]
- Moein, M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2021, 224, 121794. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Wasylka, J.P.; Morrison, C.; Wieczorek, P.P.; Namieśnik, J.; Marć, M. Application of molecularly imprinted polymers in an analytical chiral separation and analysis. Trends Anal. Chem. 2018, 102, 91–102. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Bubniene, U.S.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications. J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef]
- Wang, J.H.; Liang, R.M.; Qin, W. Molecularly imprinted polymer-based potentiometric sensors. Trends Anal. Chem. 2020, 130, 115980. [Google Scholar] [CrossRef]
- Ansari, S.; Masounm, S. Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta 2021, 223, 121411. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Cruz, A.G.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Jancuzura, M.; Luliński, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef]
- Parisi, O.I.; Francomano, F.; Dattilo, M.; Patitucci, F.; Prete, S.; Amone, F.; Puoci, F. The evolution of molecular recognition: From antibodies to molecularly imprinted polymers (MIPs) as artificial counterpart. J. Funct. Biomater. 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Reville, E.K.; Sylvester, E.H.; Benware, S.J.; Negi, S.S.; Berda, E.B. Customizable molecular recognition: Advancements in design, synthesis, and application of molecularly imprinted polymers. Polym. Chem. 2022, 13, 3387–3411. [Google Scholar] [CrossRef]
- Cui, B.C.; Liu, P.; Liu, X.J.; Liu, S.Z.; Zhang, Z.H. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Ding, L.; Che, G.B.; Jiang, W.; Sang, L. Recent advances and trends of molecularly imprinted polymers for specifific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Anal. Chem. 2019, 114, 11–28. [Google Scholar] [CrossRef]
- Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. [Google Scholar] [CrossRef]
- Budnicka, M.; Sobiech, M.; Kolmsa, J.; Luliński, P. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions e Recent advancements and application to environmental, food and biomedical analysis. Trends Anal. Chem. 2022, 156, 116711. [Google Scholar] [CrossRef]
- Zhao, G.L.; Zhang, Y.; Sun, D.N.; Yan, S.L.; Wang, Y.X.; Li, G.S.; Liu, H.T.; Li, J.H.; Song, Z.H. Recent advances in molecularly imprinted polymers for antibiotic analysis. Molecules 2023, 28, 335. [Google Scholar] [CrossRef]
- Liu, Z.M.; Xu, Z.G.; Wang, D.; Yang, Y.M.; Duan, Y.L.; Ma, L.P.; Lin, T.; Liu, H.C. A review on molecularly imprinted polymers preparation by computational simulation-aided methods. Polymers 2021, 13, 2657. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhi, K.K.; Zhang, Y.G.; Liu, Y.X.; Zhang, L.T.; Yasin, A.; Lin, Q.F. Molecularly imprinted polymers for gossypol via sol-gel, bulk, and surface layer imprinting-A comparative study. Polymers 2019, 11, 602. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Kiliç, S.; Esen, C.; Denizli, A. Molecularly imprinted polymer-based sensors for protein detection. Polymers 2023, 15, 629. [Google Scholar] [CrossRef]
- Yang, K.G.; Li, S.W.; Liu, L.K.; Chen, Y.W.; Zhou, W.; Pei, J.Q.; Liang, Z.; Zhang, L.H.; Zhang, Y.K. Epitope imprinting technology: Progress, applications, and perspectives toward artificial antibodies. Adv. Mater. 2019, 31, 1902048. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Adesanmi, B.O.; McLamore, E.S.; Wei, J.J.; Obare, S.O. Molecularly imprinted plasmonic sensors as nano-transducers: An effective approach for environmental monitoring applications. Chemosensors 2023, 11, 203. [Google Scholar] [CrossRef]
- Dong, C.Y.; Shi, H.X.; Han, Y.R.; Yang, Y.Y.; Wang, R.X.; Men, J.Y. Molecularly imprinted polymers by the surface imprinting technique. Eur. Poly. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Hu, Y.L.; Wang, Z.; Zhang, H.W.; Zhang, B.; Ren, Z.Q. Facile preparation of a rubidium ion-imprinted polymer by bulk polymerization for highly efficient separation of rubidium ions from aqueous solution. New J. Chem. 2021, 45, 9582–9590. [Google Scholar] [CrossRef]
- Hu, Y.X.; Feng, S.L.; Gao, F.; Chan, E.C.Y.; Grant, E.; Lu, X.N. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chem. 2015, 176, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Song, R.Y.; Yu, X.F.; Liu, M.X.; Hu, X.L.; Zhu, S.Q. Anion exchange affinity-based controllable surface imprinting synthesis of ultrathin imprinted films for protein recognition. Polymers 2022, 14, 2011. [Google Scholar] [CrossRef]
- Li, J.W.; Zhou, X.J.; Yan, Y.; Shen, D.L.; Lu, D.Q.; Guo, Y.P.; Xie, L.W.; Deng, B. Selective recognition of gallic acid using hollow magnetic molecularly imprinted polymers with double imprinting surfaces. Polymers 2022, 14, 175. [Google Scholar] [CrossRef]
- Liu, S.; Bi, Q.Y.; Long, Y.Y.; Li, Z.X.; Bhattacharyya, S.; Li, C. Inducible epitope imprinting: ’generating’ the required binding site in membrane receptors for targeted drug delivery. Nanoscale 2017, 9, 5394–53973. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sens. Actuators B Chem. 2022, 353, 131160. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.L.; Han, K.Y.; Sun, D.N.; Zhou, N.; Song, Z.H.; Liu, H.T.; Li, J.H.; Li, G.S. Applications of molecular imprinting technology in the study of traditional Chinese medicine. Molecules 2023, 28, 301. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Zhang, Y.T.; Zhao, P.; Cai, J.M.; Yao, Y.J.; Liang, J.Y. Preparation of molecularly imprinted cysteine modified zinc sulfide quantum dots based sensor for rapid detection of dopamine hydrochloride. Molecules 2023, 28, 3646. [Google Scholar] [CrossRef] [PubMed]
- Rachkov, A.; Minoura, N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta 2001, 1544, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.Z.; Latif, U.; Feroz, S. Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors 2017, 5, 7. [Google Scholar] [CrossRef]
- Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, C.Y.; Liu, S.; Wu, J.; Chen, Z.B.; Li, C.; Lu, W.Y. Active targeting of tumors through conformational epitope imprinting. Angew. Chem. Int. Ed. 2015, 54, 5157–5160. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.Y.; Lin, C.Y.; Wu, C.H.; Tai, D.F. Sensing HIV protease and its inhibitor using “helical epitope”-imprinted polymers. Sensors 2020, 20, 3592. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.F. Progress in application and radiation synthesis of molecularly imprinted polymers. Syn. Tech. Appl. 2016, 31, 11–15. (In Chinese) [Google Scholar]
- Huang, X.Z.; Xia, L.; Li, G.K. Recent progress of molecularly imprinted optical sensors. Chemosensors 2023, 11, 168. [Google Scholar] [CrossRef]
- Wright, K.M.; Bowyer, M.C.; McCluskey, A.; Holdsworth, C.I. Molecular imprinting of benzylpiperazine: A comparison of the self-assembly and semi-covalent approaches. Int. J. Mol. Sci. 2023, 24, 5117. [Google Scholar] [CrossRef]
- Chi, D.; Wang, W.; Mu, S.Y.; Chen, S.L.; Zhang, K.K. Computer-aided prediction, synthesis, and characterization of magnetic molecularly imprinted polymers for the extraction and determination of tolfenpyrad in lettuce. Foods 2023, 12, 1045. [Google Scholar] [CrossRef]
- Guc, M.; Schroeder, G. Application of molecularly imprinted polymers (MIP) and magnetic molecularly imprinted polymers (mag-MIP) to selective analysis of quercetin in flowing atmospheric-pressure afterglow mass spectrometry (FAPA-MS) and in electrospray ionization mass spectrometry (ESI-MS). Molecules 2019, 24, 2364. [Google Scholar] [CrossRef] [PubMed]
- Griffete, N.; Fresnais, J.; Espinosa, A.; Taverna, D.; Wilhelm, C.; Menager, C. Thermal polymerization on the surface of iron oxide nanoparticles mediated by magnetic hyperthermia: Implications for multi-shell grafting and environmental applications. ACS Appl. Nano Mater. 2018, 1, 547–555. [Google Scholar] [CrossRef]
- Magaña, H.; Becerra, C.D.; Medina, A.S.; Palomino, K.; Vizcaíno, G.P.; Sarabia, A.O.; Bucio, E.; Bravo, J.M.C. Radiation grafting of a polymeric prodrug onto silicone rubber for potential medical/sSurgical procedures. Polymers 2020, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Burri, H.V.R.; Yu, D.H. Covalent imprinting and covalent rebinding of benzyl mercaptan: Towards a facile detection of proteins. Anal. Lett. 2016, 50, 866–876. [Google Scholar] [CrossRef]
- Song, R.Y.; Hu, X.L.; Guan, P.; Li, J.; Zhao, N.; Wang, Q.L. Molecularly imprinted solid-phase extraction of glutathione from urine samples. Mater. Sci. Eng. C 2014, 44, 69–75. [Google Scholar] [CrossRef]
- Pupin, R.R.; Foguel, M.V.; Goncalves, L.M.; Sotomayor, M.P.T. Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. J. Appl. Polym. Sci. 2019, 136, 48496. [Google Scholar] [CrossRef]
- Fu, D.L.; Chen, T.; Liu, H.L.; Cheng, Y.J.; Zong, H.W.; Zhang, Y.H.; Zheng, R.K.; Liu, J.Q. An ultraviolet self-initiated polymerized platform for specific recognition and elimination of caffeic acid based on the molecular imprinting technology. Sens. Actuat. B Chem. 2022, 361, 131659. [Google Scholar] [CrossRef]
- Chen, J.; Bai, L.Y.; Liu, K.F.; Liu, R.Q.; Zhang, Y.P. Atrazine molecular imprinted polymers: Comparative analysis by far-infrared and ultraviolet induced polymerization. Int. J. Mol. Sci. 2014, 15, 574–587. [Google Scholar] [CrossRef]
- Söylemez, M.A.; Güven, O.; Barsbay, M. Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization. Eur. Polym. J. 2018, 103, 21–30. [Google Scholar] [CrossRef]
- Söylemez, M.A.; Barsbay, M.; Güven, O. Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting. Radiat. Phys. Chem. 2018, 142, 77–81. [Google Scholar] [CrossRef]
- Zsebi, Z.; Horváth, V.; Sáfrány, Á.; Horvai, G. Analytical followup of the gamma initiated synthesis of a molecularly imprinted polymer. Anal. Chim. Acta 2008, 608, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wolman, F.J.; Smolko, E.E.; Cascone, O.; Grasselli, M. Peptide imprinted polymer synthesized by radiation-induced graft polymerization. React. Funct. Polym. 2006, 66, 1199–1205. [Google Scholar] [CrossRef]
- Djourelov, N.; Ates, Z.; Güven, O.; Misheva, M.; Suzuki, T. Positron annihilation lifetime spectroscopy of molecularly imprinted hydroxyethyl methacrylate based polymers. Polymer 2007, 48, 2692–2699. [Google Scholar] [CrossRef]
- Kala, R.; Biju, V.M.; Rao, T.P. Synthesis, characterization, and analytical applications of erbium(III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers. Anal. Chim. Acta 2005, 549, 51–58. [Google Scholar] [CrossRef]
- Gadzala-Kopciuch, R.; Ricanyova, J.; Buszewski, B. Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography. J. Chromatogr. 2009, 877, 1177–1184. [Google Scholar] [CrossRef]
- Liu, W.; Wei, J.F.; Wang, B. The radiation polymerization method for preparing baicalein molecularly imprinted polymer. Funct. Mater. 2013, 44, 112–115. (In Chinese) [Google Scholar] [CrossRef]
- Guo, C.; Wang, B.; Huang, P.F.Y.; Shan, J.J. Preparation of ibuprofen metal-complexing imprinted polymer membrane via radiation polymerization. Funct. Mater. 2015, 14, 14123–14139. (In Chinese) [Google Scholar]
- Liu, J.; Wang, B.; Shan, J.J. Precipitate preparation of chloramphenicol molecularly imprinted nanospheres by electron beam radiation. Polym. Mater. Sci. Eng. 2014, 30, 143–148. (In Chinese) [Google Scholar]
- Wang, Y.J.; Wang, B.; Liu, W. Preparation of quercetin-Ni imprinted polymer by electron beam radiation polymerization and its recognition characteristics. Acta Polym. Sin. 2013, 4, 526–533. (In Chinese) [Google Scholar]
- Liu, J.; Yuan, F.K.; Liu, J.H. Preparation of sulfamethazine molecularly imprinted polymer by electron beam irradiation polymerization. IOP Conf. Ser. Earth Environ. Sci. 2021, 702, 012050. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, K.F.; Liu, J.H. A Method for Preparation of Sulfadiazine Molecularly Imprinted Polymer Induced by Electron Beam Radiation. CN Patent 1,130,612,08A, 2 July 2021. [Google Scholar]
- Selambakkannu, S.; Othman, N.A.F.; Ting, T.M.; Mohamed, N.H.; Hashim, A.; Karim, Z.A. Preparation and optimization of thorium selective ion imprinted nonwoven fabric grafted with poly(2-dimethylaminoethyl methacrylate) by electron beam irradiation technique. J. Environ. Chem. Eng. 2020, 8, 103737. [Google Scholar] [CrossRef]
- Jin, Y.F.; Chen, N.; Liu, R.Q.; Zhang, Y.P.; Bai, L.Y.; Chen, J. Rapid preparation of monolithic molecular imprinted polymer fiber for solid phase microextraction by microwave irradiation. J. Chin. Chem. Soc. 2013, 60, 1043–1049. [Google Scholar] [CrossRef]
- Jin, Y.F.; Zhang, Y.P.; Huang, M.X.; Bai, L.Y.; Lee, M.L. A novel method to prepare monolithic molecular imprinted polymer fifiber for solid-phase microextraction by microwave irradiation. J. Sep. Sci. 2013, 36, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.X.; Zhang, X.F.; Sun, Y.H.; Yu, D. Microwave-assisted preparation of monolithic molecularly imprinted polymeric fifibers for solid phase microextraction. Analyst 2013, 138, 2982–2987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Tan, W.; Hu, Y.L.; Li, G.K.; Zan, S. Microwave synthesis of gibberellin acid 3 magnetic molecularly imprinted polymer beads for the trace analysis of gibberellin acids in plant samples by liquid chromatography-mass spectrometry detection. Analyst 2012, 137, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.H.; Liu, W.Q.; Bai, W.T.; Xie, Y.H. Preparation and adsorption properties of quercetin imprinted polymer on silica gel under microwave irradiation. Jiangxi J. Tradit. Chin. Med. 2015, 9, 74–77. (In Chinese) [Google Scholar]
- Luo, Z.W.; Xu, J.H.; Zhu, D.M.; Wang, D.; Xu, J.J.; Jiang, H.; Geng, W.H.; Wei, W.J.; Lian, Z.Y. Ion-imprinted polypropylene fibers fabricated by the plasma-mediated grafting strategy for efficient and selective adsorption of Cr(VI). Polymers 2019, 11, 1508. [Google Scholar] [CrossRef]
- Zhao, C.D.; Guan, X.M.; Liu, X.Y.; Zhang, H.X. Synthesis of molecularly imprinted polymer using attapulgite as matrix by ultrasonic irradiation for simultaneous on-line solid phase extraction and high performance liquid chromatography determination of four estrogensp. J. Chromatogr. A 2012, 1229, 72–78. [Google Scholar] [CrossRef]
- Phutthawong, N.; Pattarawarapan, M. Synthesis of highly selective spherical caffeine imprinted polymers via ultrasound-assisted precipitation polymerization. J. Appl. Polym. Sci. 2013, 128, 3893–3899. [Google Scholar] [CrossRef]
- Phutthawong, N.; Pattarawarapan, M. Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization. Polym. Bull. 2013, 70, 691–705. [Google Scholar] [CrossRef]
- Zhang, W.; She, X.H.; Wang, L.P.; Fan, H.J.; Zhou, Q.; Huang, X.W.; Tang, J.Z. Preparation, characterization and application of a molecularly imprinted polymer for selective recognition of sulpiride. Materials 2017, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Asman, S.; Mohamad, S.; Sarih, N.M. Exploiting β-cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media. Int. J. Mol. Sci. 2015, 16, 3656–3676. [Google Scholar] [CrossRef] [PubMed]
- Sadia, M.; Ahmad, I.; Ali, F.; Zahoor, M.; Ullah, R.; Khan, F.A.L.; Ali, E.A.; Sohail, A. Selective removal of the emerging dye basic blue 3 via molecularly imprinting technique. Molecules 2022, 27, 3276. [Google Scholar] [CrossRef]
- Yang, J.J.; Li, Y.; Huang, C.N.; Jiao, Y.N.; Chen, J.P. A phenolphthalein-dummy template molecularly imprinted polymer for highly selective extraction and clean-up of bisphenol a in complex biological, environmental and food samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef]
- Zhong, D.D.; Liu, X.; Pang, Q.Q.; Huang, Y.P.; Liu, Z.S. Rapid preparation of molecularly imprinted polymer by frontal polymerization. Anal. Bioanal. Chem. 2013, 405, 3205–3214. [Google Scholar] [CrossRef]
- Viveiros, R.; Lopes, M.I.; Heggie, W.; Casimiro, T. Green approach on the development of lock-and-key polymers for API purifification. Chem. Eng. J. 2017, 308, 229–239. [Google Scholar] [CrossRef]
- Viveiros, R.; Karim, K.; Piletsky, S.A.; Heggie, W.; Casimiro, T. Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach. J. Clean. Prod. 2017, 168, 1025–1031. [Google Scholar] [CrossRef]
- Byun, H.S.; Chun, D.B. Adsorption and separation properties of gallic acid imprinted polymers prepared using supercritical fluid technology. J. Supercrit. Fluids 2017, 120, 249–257. [Google Scholar] [CrossRef]
- Martins, A.N.C.; Simeonov, S.P.; Frija, L.M.T.; Viveiros, R.; Lourenco, A.; Silva, M.S.; Casimiro, T.; Afonso, C.A.M. Isolation, analytical quantifification and seasonal variation of labdanolic acid from the Portuguese-grown Cistus ladaniferus. Ind. Crop. Prod. 2014, 60, 226–232. [Google Scholar] [CrossRef]
- Silva, M.S.; Nobrega, F.L.; Ricardo, A.A. Development of molecularly imprinted co-polymeric devices for controlled delivery of flufenamic acid using supercritical fluid technology. J. Supercriti. Fluids 2011, 58, 150–157. [Google Scholar] [CrossRef]
- Li, X.J.; Chen, X.X.; Sun, G.Y.; Zhao, Y.X.; Liu, Z.S.; Aisa, H.A. Green synthesis and evaluation of isoquercitrin imprinted polymers for class-selective separation and purification of flavonol glycosides. Anal. Methods 2015, 7, 4717–4724. [Google Scholar] [CrossRef]
- Li, F.; Chen, X.X.; Huang, Y.P.; Liu, Z.S. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith. J. Chromatogr. A 2015, 1425, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.D.; Huang, Y.P.; Xin, X.L. Preparation of metallic pivot-based imprinted monolith for polar template. J. Chromatogr. B 2013, 934, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Booker, K.; Holdsworth, C.I.; Doherty, C.M.; Hill, A.J.; Bowyer, M.C.; McCluskey, A. Ionic liquids as porogens for molecularly imprinted polymers: Propranolol, a model study. Org. Biomol. Chem. 2014, 12, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Booker, K.; Bowyer, M.C.; Holdsworth, C.I.; McCluskey, A. Efficient preparation and improved sensitivity of molecularly imprinted polymers using room temperature ionic liquids. Chem. Commun. 2006, 16, 1730–1732. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, W.; Wang, Q.; Zhu, T. Deep eutectic solvents modifified molecular imprinted polymers for optimized purification of chlorogenic acid from honeysuckle. J. Chromatogr. Sci. 2016, 54, 271–279. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chim. Acta 2016, 936, 168–178. [Google Scholar] [CrossRef]
- Shen, D.L.; Yan, Y.; Hu, X.P.; Zhong, Y.J.; Li, Z.Y.; Guo, Y.P.; Xie, L.W.; Yuan, D.Y. Deep-eutectic-solvent-based mesoporous molecularly imprinted polymers for purification of gallic acid from camellia spp. fruit shells. Int. J. Mol. Sci. 2022, 23, 13089. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, J.; Zhu, C.N.; Hua, Y.Y.; Yu, J.; Jia, L.L.; Xu, J.H.; Li, J.L.; Li, Q.J. A fluorescent molecularly imprinted polymer-coated paper sensor for on-site and rapid detection of glyphosate. Molecules 2023, 28, 2398. [Google Scholar] [CrossRef]
- Zhi, K.K.; Li, Z.; Luo, H.; Ding, Y.T.; Chen, F.Y.; Tan, Y.X.; Liu, H.R. Selective adsorption of quercetin by the sol-gel surface molecularly imprinted polymer. Polymers 2023, 15, 905. [Google Scholar] [CrossRef]
- Yang, Y.R.; Shen, X.T. Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules 2022, 27, 7355. [Google Scholar] [CrossRef] [PubMed]
- Boyère, C.; Jérôme, C.; Debuigne, A. Input of supercritical carbon dioxide to polymer synthesis: An overview. Eur. Polym. J. 2014, 61, 45–63. [Google Scholar] [CrossRef]
- Huang, W.Z.; Wu, X.Y.; Zhu, Q.G.; Wu, W.; Lu, Y.; Chen, Z.J. Ionic liquids: Green and tailor-made solvents in drug delivery. Drug Discov. Today 2020, 25, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Prabhune, A.; Dey, R. Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq. 2023, 380, 121676. [Google Scholar] [CrossRef]
- Tu, X.J.; Chen, W.B. A review on the recent progress in matrix solid phase dispersion. Molecules 2018, 23, 2767. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Advances in molecularly imprinted polymers based affifinity sensors (Review). Polymers 2021, 13, 974. [Google Scholar] [CrossRef]
- Donato, L.; Nasser, I.I.; Majdoub, M.; Drioli, E. Green chemistry and molecularly imprinted membranes. Membranes 2022, 12, 472. [Google Scholar] [CrossRef]
- Chiappini, A.; Pasquardini, L.; Bossi, A.M. Molecular imprinted polymers coupled to photonic structures in biosensors: The state of art. Sensors 2020, 20, 5069. [Google Scholar] [CrossRef]
- Wu, H.R.; Lin, G.; Liu, C.C.; Chu, S.Y.; Mo, C.; Liu, X.B. Progress and challenges in molecularly imprinted polymers for adsorption of heavy metal ions from wastewater. Trends Environ. Anal. 2022, 36, e00178. [Google Scholar] [CrossRef]
- Kong, D.L.; Qiao, N.; Wang, N.; Wang, Z.; Wang, Q.; Zhou, Z.Y.; Ren, Z.Q. Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution. Phy. Chem. Chem. Phys. 2018, 20, 12870–12878. [Google Scholar] [CrossRef]
- Wang, H.P.; Lin, Y.C.; Li, Y.; Dolgormaa, A.; Fang, H.; Guo, L.; Huang, J.; Yang, J.X. A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1874–1885. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Liu, X.T.; Zhang, M.H.; Jiao, J.; Zhang, H.W.; Du, J.; Zhang, B.; Ren, Z.Q. Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution. Sci. Total Environ. 2020, 699, 134334. [Google Scholar] [CrossRef]
- Yin, F.Q.; Yang, H.Z.; Huo, K.X.; Liu, X.T.; Yuan, M.; Cao, H.; Ye, T.; Sun, X.Y.; Xu, F. Preparation of efficient ion-imprinted polymers for selectively removing and detecting As(III) from the aqueous phase. New J. Chem. 2022, 46, 15460–15472. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wu, J.Y.; Luo, X.B. Facile preparation of a novel Hg(II)-ion-imprinted polymer based on magnetic hybrids for rapid and highly selective removal of Hg(II) from aqueous solutions. RSC Adv. 2016, 6, 14916–14926. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Kong, D.L.; Zhu, H.Y.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.S.; Zhang, W.D. Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution. J. Hazard. Mater. 2018, 341, 355–364. [Google Scholar] [CrossRef]
- Khajeh, M.; Kaykhaii, M.; Mirmoghaddam, M.; Hashemi, H. Separation of zinc from aqueous samples using a molecular imprinting technique. Inter. J. Environ. Analy. Chem. 2009, 89, 981–992. [Google Scholar] [CrossRef]
- Tao, H.C.; Gu, Y.H.; Liu, W.; Huang, S.B.; Cheng, L.; Zhang, L.J.; Zhu, L.L.; Wang, Y. Preparation of palladium(II) ion-imprinted polymeric nanospheres and its removal of palladium(II) from aqueous solution. Nanoscale Res. Lett. 2017, 12, 583. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.T.; Zhang, M.H.; Wang, Z.; Zhou, Z.Y.; Ren, Z.Q. Facile preparation of novel ion-imprinted polymers for selective extraction of Br(I) ions from aqueous solution. Ind. Eng. Chem. Res. 2019, 58, 6670–6678. [Google Scholar] [CrossRef]
- Castro, E.Y.B.; Navarro, A.Z.; Mar, J.L.G.; Alamo, M.F.; Ortega, B.M. Ion-imprinted polymer structurally preorganized using a phenanthroline-divinylbenzoate complex with the Cu(II) ion as template and some adsorption results. Polymers 2023, 15, 1186. [Google Scholar] [CrossRef]
- Tadic, T.; Markovic, B.; Radulovic, J.; Lukić, J.; Suručić, L.; Nastasović, A.; Onjia, A. A Core-shell amino-functionalized magnetic molecularly imprinted polymer based on glycidyl methacrylate for dispersive solid-phase microextraction of aniline. Sustainability 2022, 14, 9222. [Google Scholar] [CrossRef]
- Caldara, M.; Lowdon, J.W.; Royakkers, J.; Peeters, M.; Cleij, T.J.; Dilien, H.; Eerseles, K.; Grinsven, B. A molecularly imprinted polymer-based thermal aensor for the selective detection of melamine in milk samples. Foods 2022, 11, 2906. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.T.; Deng, Z.W.; Wang, Q.; Li, H.; Li, S.; Xu, X.M.; Zhou, Y.S.; Sun, S.K.; Xuan, C.; Tian, Q.W.; et al. Magnetic molecularly imprinted polymers for the rapid and selective extraction and detection of methotrexatein serum by HPLC-UV analysis. Molecules 2022, 27, 6084. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.J.; Wang, Y.P.; Yang, S.; Sun, X.H.; Peng, B.; Pan, L.N.; Jia, Y.Z.; Zhang, X.B.; Nie, C. Molecularly imprinted polymer nanospheres with hydrophilic shells for efficient molecular recognition of heterocyclic aromatic amines in aqueous solution. Molecules 2023, 28, 2052. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.D.; Pan, S.H.; Ding, C.Y.; He, J.; Wang, C.J. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J. Chromatogr. A 2017, 1511, 85–91. [Google Scholar] [CrossRef]
- González, E.L.; Sánchez, M.G.; Arsuaga, I.U.; Urraca, J.L. Core-shell magnetic imprinted polymers for the recognition of FLAG-tagpeptide. Int. J. Mol. Sci. 2023, 24, 3453. [Google Scholar] [CrossRef]
- Goyal, G.; Bhakta, S.; Mishra, P. Surface molecularly imprinted biomimetic magnetic nanoparticles for enantioseparation. ACS Appl. Nano Mater. 2019, 2, 6747–6756. [Google Scholar] [CrossRef]
- Ma, X.B.; Li, S.Y.; Qiu, J.J.; Liu, Z.J.; Liu, S.Y.; Huang, Z.F.; Yong, Y.H.; Li, Y.Q.; Yu, Z.C.; Liu, X.X.; et al. Development of an Fe3O4 surface-grafted carboxymethyl chitosan molecularly imprinted polymer for specific recognition and sustained release of salidroside. Polymers 2023, 15, 1187. [Google Scholar] [CrossRef]
- Ali, M.M.; Zhu, S.J.; Amin, F.R.; Hussain, D.; Du, Z.X.; Hu, L.H. Molecular imprinting of glycoproteins: From preparation to cancer theranostics. Theranostics 2022, 12, 2406–2426. [Google Scholar] [CrossRef]
- Bodoki, A.E.; Iacob, B.C.; Bodoki, E. Perspectives of molecularly imprinted polymer-based drug delivery systems in cancer therapy. Polymers 2019, 11, 2085. [Google Scholar] [CrossRef]
- Dietl, S.; Sobek, H.; Mizaikoff, B. Epitope-imprinted polymers for biomacromolecules: Recent strategies, future challenges and selected applications. Trends Anal. Chem. 2021, 143, 116414. [Google Scholar] [CrossRef]
- Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly imprinted polymers for cell recognition. Trends Biotechnol. 2020, 38, 368–387. [Google Scholar] [CrossRef] [PubMed]
- Vaneckova, T.; Bezdekova, J.; Han, G.; Adam, V.; Vaculovicova, M. Application of molecularly imprinted polymers as artifificial receptors for imaging. Acta Biomater. 2020, 101, 444–458. [Google Scholar] [CrossRef] [PubMed]
- Piletsky, S.S.; Piletska, E.; Poblocka, M.; Macip, S.; Jones, D.J.; Braga, M.; Cao, T.H.; Singh, R.; Spivey, A.C.; Aboagyem, E.O.; et al. Snapshot imprinting: Rapid identification of cancer cell surface proteins and epitopes using molecularly imprinted polymers. Nano Today 2021, 41, 101304. [Google Scholar] [CrossRef]
- Li, Z.L.; Guan, P.; Hu, X.L.; Ding, S.C.; Tian, Y.; Xu, Y.R.; Qian, L.W. Preparation of molecularly imprinted mesoporous materials for highly enhancing adsorption performance of cytochrome C. Polymers 2018, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.P.; Dong, W.Y.; Zhang, X.H.; Yu, J.X.; Huang, C.B.; Deng, L.J.; Chen, H.P.; Peng, H.L. Preparation and characterization of protein molecularly imprinted poly(ionic liquid)/calcium alginate composite cryogel membrane with high mechanical strength for the separation of bovine serum albumin. Molecules 2022, 27, 7304. [Google Scholar] [CrossRef]
- Lee, M.H.; Lin, C.C.; Sharma, P.S.; Thomas, J.L.; Lin, C.Y.; Iskierko, Z.; Borowicz, P.; Lin, C.Y.; Kutner, W.; Yang, C.H.; et al. Peptide selection of MMP-1 for electrochemical sensing with epitope-imprinted poly(TPARA-co-EDOT)s. Biosensors 2022, 12, 1018. [Google Scholar] [CrossRef]
- Fan, H.R.; Wang, J.P.; Meng, Q.R.; Xu, X.M.; Fan, T.M.; Jin, Z.Y. Preparation of photoirradiation molecular imprinting polymer for selective separation of branched cyclodextrins. Molecules 2017, 22, 288. [Google Scholar] [CrossRef]
- Kassem, S.; Piletsky, S.S.; Yesilkaya, H.; Gazioglu, O.; Habtom, M.; Canfarotta, F.; Piletska, E.; Spivey, A.C.; Aboagye, E.O.; Piletsky, S.A. Assessing the in vivo biocompatibility of molecularly imprinted polymer nanoparticles. Polymers 2022, 14, 4582. [Google Scholar] [CrossRef]
- Byeon, J.W.; Yang, J.C.; Cho, C.H.; Lim, S.J.; Park, J.P.; Park, J. A Facile surface-imprinting strategy for trypsin-imprinted polymeric chemosensors using two-step spin-coating. Chemosensoers 2023, 11, 189. [Google Scholar] [CrossRef]
- Liu, R.H.; Cui, Q.L.; Wang, C.; Wang, X.Y.; Yang, Y.; Li, L.D. Preparation of sialic acid-imprinted fluorescent conjugated nanoparticles and their application for targeted cancer cell imaging. Appl. Mater. Interfaces 2017, 9, 3006–3015. [Google Scholar] [CrossRef]
- Li, S.W.; Yang, K.P.; Deng, N.; Min, Y.; Liu, L.K.; Zhang, L.H.; Zhang, Y.K. Thermoresponsive epitope surface-imprinted nanoparticles for specific capture and release of target protein from human plasma. Appl. Mater. Interfaces 2016, 8, 5747–5751. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, M.; Zhang, Y.; Ma, Z.B.; Xiao, N.N.; He, X.W.; Li, W.Y.; Zhang, Y.K. Preparation of dual-template epitope imprinted polymers for targeted fluorescence imaging and targeted drug delivery to pancreatic cancer BxPC-3 cell. Appl. Mater. Interfaces 2019, 11, 32431–32440. [Google Scholar] [CrossRef]
- Lu, H.F.; Xu, S.X.; Guo, Z.C.; Zhao, M.H.; Liu, Z. Redox-responsive molecularly imprinted nanoparticles for targeted intracellular delivery of protein toward cancer therapy. ACS Nano 2021, 15, 18214–18225. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Lin, H.Y.; Thomas, J.L.; Yu, J.X.; Lin, C.Y.; Chang, Y.H.; Lee, M.H.; Wang, T.L. Embedded upconversion nanoparticles in magnetic molecularly imprinted polymers for photodynamic therapy of hepatocellular carcinoma. Biomedicines 2021, 9, 1923. [Google Scholar] [CrossRef] [PubMed]
- Pasang, T.; Ranganathaiah, C. Preparation and characterization of molecularly imprinted polymer for selective adsorption of 4-chlorophenol molecules by physical selectivity method. Ind. Eng. Chem. Res. 2013, 52, 7445–7452. [Google Scholar] [CrossRef]
- Söylemez, M.A.; Güven, O. Preparation and detailed structural characterization of Penicillin G imprinted polymers by PALS and XPS. Radiat. Phys. Chem. 2019, 159, 174–180. [Google Scholar] [CrossRef]
- Söylemez, M.A. Synthesis and characterization of tetracycline-imprinted membranes: A detailed positron annihilation lifetime spectroscopy investigation. J. Mol. Recognit. 2021, 34, e2895. [Google Scholar] [CrossRef]
Type | Preparation Method | Template | Carrier | Application | Ref. |
---|---|---|---|---|---|
Bulk imprinted polymers | bulk polymerization | Rb+ | none | decontamination | [34] |
bulk polymerization | melamine | none | sensor | [35] | |
Surface imprinted polymers | grafting polymerization | BSA | polymeric nanoparticles | sample preparation | [36] |
grafting polymerization | gallic acid | Fe3O4 | sample preparation | [37] | |
Epitope-imprinted polymers | electrochemical polymerization | ncovS1 | Au-TFME | diagnostics | [38] |
irradiated polymerization | peptide | gold chip | therapy | [39] |
Thermal Polymerization | Approach | Template | Carrier | Application | Ref. |
---|---|---|---|---|---|
Traditional | oil bath | benzylpiperazine | none | sample preparation | [49] |
oil bath | tolfenpyrad | Fe3O4 | sample preparation | [50] | |
Other | oven | quercetin | Fe3O4 | sample preparation | [51] |
magnetic field | nitrophenol | Fe3O4 | decontamination | [52] |
Radiation Polymerization | Approach | Template | Carrier | Application | Ref. |
---|---|---|---|---|---|
UV | solution polymerization | benzyl mercaptan | none | sensor | [54] |
solution polymerization | glutathione | none | sample preparation | [55] | |
grafting polymerization | Penicillin G | Fe3O4 | decontamination | [56] | |
grafting polymerization | caffeic acid | TiO2 | sensor | [57] | |
solution polymerization | atrazine | none | decontamination | [58] | |
γ-rays | grafting polymerization | atrazine | fiber | decontamination | [59] |
grafting polymerization | erythromycin | fabrics | sample preparation | [60] | |
solution polymerization | phenytoin | none | sample preparation | [61] | |
grafting polymerization | bacitracin | membrane | sample preparation | [62] | |
solution polymerization | glucose | none | sample preparation | [63] | |
bulk polymerization | Er3+ | none | decontamination | [64] | |
solution polymerization | steroid | none | sample preparation | [65] | |
Electron Beam | solution polymerization | baicalin | none | sample preparation | [66] |
grafting polymerization | ibuprofen | membrane | sample preparation | [67] | |
solution polymerization | chloramphenicol | none | sample preparation | [68] | |
solution polymerization | quercetin-nickel | none | sample preparation | [69] | |
solution polymerization | sulfamethazine | none | sample preparation | [70,71] | |
grafting polymerization | Th3+ | fabrics | decontamination | [72] | |
Other | microwave radiation | olivetol | none | sample preparation | [73] |
microwave radiation | dimethyl phthalate | none | sample preparation | [74] | |
microwave radiation | bisphenol A | none | sample preparation | [75] | |
microwave radiation | gibberellin acid | Fe3O4 | sample preparation | [76] | |
microwave radiation | quercetin | silica | sample preparation | [77] | |
Plasma grafting | Cr6+ | fiber | decontamination | [78] | |
ultrasonic irradiation | naphthol | attapulgite | sample preparation | [79] | |
ultrasonic irradiation | caffeine | none | sample preparation | [80] | |
ultrasonic irradiation | caffeine | none | sample preparation | [81] |
Green Polymerization | Template | Carrier | Application | Ref. |
---|---|---|---|---|
Bulk | sulpiride | none | sample preparation | [82] |
benzylparaben | none | decontamination | [83] | |
basic blue | none | decontamination | [84] | |
bisphenol A | none | decontamination | [85] | |
levofloxacin | none | sample preparation | [86] | |
Supercritical carbon dioxide | acetamide | none | sample preparation | [87] |
acetamide | none | sample preparation | [88] | |
gallic acid | none | sample preparation | [89] | |
labdanolic acid | none | sample preparation | [90] | |
flufenamic acid | none | drug delivery | [91] | |
Ionic liquids | isoquercitrin | none | sample preparation | [92] |
naproxon | POSS | sample preparation | [93] | |
methyl gallate | none | sample preparation | [94] | |
propranolol | none | sample preparation | [95] | |
aconitic acid | none | sample preparation | [96] | |
Deep eutectic solvent | chlorogenic acid | none | sample preparation | [97] |
bovine hemoglobin | none | sample preparation | [98] | |
gallic acid | none | sample preparation | [99] | |
Sol-Gel | gossypol | silica | sample preparation | [29] |
glyphosate | paper | sensor | [100] | |
Quercetin | silica | sample preparation | [101] |
Template | Type | Preparation Method | Liner Range | LOD | Application | Ref. |
---|---|---|---|---|---|---|
Pb2+ | SIPs | thermal polymerization | Maxcapacity = 51.2 mg/g | decontamination | [111] | |
Cd2+ | SIPs | sol–gel | Maxcapacity = 26.1 mg/g | decontamination | [112] | |
Cr2O72- | SIPs | thermal polymerization | Maxcapacity = 201.55 mg/g | decontamination | [113] | |
As3+ | SIPs | sol–gel | 2.5–20 μg/L | 1.60 μg/L | sample preparation | [114] |
Hg2+ | SIPs | thermal polymerization | Maxcapacity = 78.3 mg/g | decontamination | [115] | |
Ni2+ | BIPs | thermal polymerization | Maxcapacity = 86.3 mg/g | decontamination | [116] | |
Zn2+ | BIPs | thermal polymerization | 25–200 μg/L | 2.90 μg/L | sample preparation | [117] |
Pd2+ | BIPs | thermal polymerization | Maxcapacity = 5.085 mg/g | decontamination | [118] | |
Br- | BIPs | chemical cross-linking | Maxcapacity = 18.89 mg/g | decontamination | [119] | |
Cu2+ | BIPs | thermal polymerization | Maxcapacity = 287.45 mg/g | decontamination | [120] |
Template | Type | Preparation Method | Liner Range | LOD | Application | Ref. |
---|---|---|---|---|---|---|
Aniline | SIPs | thermal polymerization | 1–200 ng/mL | 1.0 ng/mL | sample preparation | [121] |
Melamine | BIPs | thermal polymerization | 6.02–90 μM | 6.02 μM | sample preparation | [122] |
Methotrexate | SIPs | sol-gel | 0.05–250 μg/L | 12.51 ng/mL | sample preparation | [123] |
Harmine | BIPs | thermal polymerization | Maxcapacity = 6.0 mg/g | decontamination | [124] | |
DEHP | SIPs | thermal polymerization | 3–2000 μg/L | 0.92 ng/mL | sample preparation | [125] |
DYKD | EIPs | thermal polymerization | Maxrecovery = 79.1% | sample preparation | [126] | |
Naproxen | SIPs | thermal polymerization | SNaproxen/RNaproxen = 4.1 | enantioseparation | [127] | |
Salidroside | SIPs | thermal polymerization | total release = 86% | drug delivery | [128] |
Template | Type | Preparation Method | Liner Range | LOD | Application | Ref. |
---|---|---|---|---|---|---|
Peptide | EIPs | thermal polymerization | Dissociation Constant = 16.8 | diagnostics | [134] | |
Cyt c | SIPs | sol–gel and cross-linking | Maxcapacity = 86.47 mg/g | sample preparation | [135] | |
BSA | BIPs | thermal and cross-linking | Maxcapacity = 485.87 mg/g | sample preparation | [136] | |
Peptide | EIPs | electropolymerization | 0.001 to 10.0 pg/mL | 0.2 fg/mL | sample preparation | [137] |
Cyclodextrins | BIPs | thermal polymerization | Maxcapacity = 7.93 μmol/g | sample preparation | [138] | |
Trypsin | EIPs | thermal polymerization | / | risk assessing | [139] | |
Trypsin | SIPs | UV radiation | 0.006–0.24 μg/mL | 25.33 ng/mL | sensor | [140] |
Sialic acid | EIPs | chemical cross-linking | enhance fluorescence | biological imaging | [141] | |
Protein | EIPs | thermal and cross-linking | Maxcapacity = 46.6 mg/g | sample preparation | [142] | |
Glu-FH & BLM | EIPs | sol–gel and cross-linking | enhanced inhibiting | targeted therapy | [143] | |
RNase A | EIPs | sol–gel and cross-linking | high therapeutic efficacy | targeted therapy | [144] | |
PD-L1 | EIPs | grafting and cross-linking | enhancing efficacy of therapy | drug delivery | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Miao, P.; Liu, S.; Gao, J.; Han, X.; Zhao, Y.; Chen, T. Preparation and Application Progress of Imprinted Polymers. Polymers 2023, 15, 2344. https://doi.org/10.3390/polym15102344
Shen Y, Miao P, Liu S, Gao J, Han X, Zhao Y, Chen T. Preparation and Application Progress of Imprinted Polymers. Polymers. 2023; 15(10):2344. https://doi.org/10.3390/polym15102344
Chicago/Turabian StyleShen, Yongsheng, Pengpai Miao, Shucheng Liu, Jie Gao, Xiaobing Han, Yuan Zhao, and Tao Chen. 2023. "Preparation and Application Progress of Imprinted Polymers" Polymers 15, no. 10: 2344. https://doi.org/10.3390/polym15102344
APA StyleShen, Y., Miao, P., Liu, S., Gao, J., Han, X., Zhao, Y., & Chen, T. (2023). Preparation and Application Progress of Imprinted Polymers. Polymers, 15(10), 2344. https://doi.org/10.3390/polym15102344