Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Silk Sericin (SS) Powder via Water Degumming Process
2.3. Fabrication of Porous Hydrogel Scaffold
2.3.1. System A: Crosslinked-PHEMA/SS (C-PHEMA/SS)
2.3.2. System B: Crosslinked-PHEMA/pC-SS (C-PHEMA/pC-SS)
2.4. Gelation Time
2.5. Characterizations of Porous Hydrogel Scaffolds
2.5.1. Morphology via SEM
2.5.2. Assessment of Molecular Interaction via FT-IR
2.5.3. Assessment of Thermal Properties via DSC
2.5.4. Swelling Ratio
2.5.5. In Vitro Degradation
2.5.6. In Vitro Cell Cytotoxicity
3. Results and Discussion
3.1. Gelation Time and Physical Appearance
3.2. Morphology of Porous Hydrogel Scaffolds
3.3. Swelling Ratios
3.4. In Vitro Degradation
3.5. Functional Groups
3.6. Thermal Properties
3.7. In Vitro Cell Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sayed, S.; Mabrouk, M.; Khallaf, M.; Shehata, M. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J. Drug Deliv. Sci. Technol. 2020, 57, 101757. [Google Scholar] [CrossRef]
- Homa, A.; Shamloo, A.; Kamali, A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Mater. Sci. Eng. C 2020, 113, 110957. [Google Scholar]
- Hassouna, A.; Elgharbawy, H.; Morsy, R. Development of porous scaffolds based on the in situ synthesis of biphasic calcium phosphate in a gelatin-polyvinyl alcohol matrix for bone tissue engineering. J. Mol. Struct. 2023, 1279, 134951. [Google Scholar] [CrossRef]
- Udhayakumar, S.; Shankar, K.; Sowndarya, S.; Venkatesh, S.; Muralidharan, C.; Rose, C. L-Arginine intercedes bio-crosslinking of a collagen-chitosan 3D-hybrid scaffold for tissue engineering and regeneration: In silico, in vitro, and in vivo studies. RSC Adv. 2017, 7, 25070–25088. [Google Scholar] [CrossRef]
- Seidi, A.; Ramalingam, M. Protocols for Biomaterial Scaffold Fabrication. Integr. Biomater. Tissue Eng. 2012, 1–23. [Google Scholar] [CrossRef]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef]
- Sanchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Perez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- Chen, X.; Huang, X.; Liu, C.; Li, S.; Yang, Z.; Zhang, F.; Tao, L.; Zhang, M. Surface-fill H2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater. 2022, 154, 259–274. [Google Scholar] [CrossRef]
- Bayattork, M.; Rajkhowa, R.; Allardyce, B.; Wang, X.; Li, J. Tuning the microstructure and mechanical properties of lyophilized silk scaffolds by pre-freezing treatment of silk hydrogel and silk solution Author links open overlay panel. J. Colloid. Interface Sci. 2023, 631, 46–55. [Google Scholar] [CrossRef]
- Elango, J.; Lijnev, A.; Zamor-Ledezma, C.; Alexis, F.; Wu, W.; Marin, J.; Sanchez de Val, J. The relationship of rheological properties and the performance of silk fibroin hydrogels in tissue engineering application. Process Biochem. 2023, 125, 198–211. [Google Scholar] [CrossRef]
- Sapru, S.; Ghosh, A.; Kundo, S. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydr. Polym. 2017, 167, 196–209. [Google Scholar] [CrossRef]
- Kurland, N.; Ragland, R.; Zhang, A.; Moustafa, M.; Kundu, S.; Yadavalli, V. PH responsive poly amino-acid hydrogels formed via silk sericin templating. Int. J. Biol. Macromol. 2014, 70, 565–571. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Zhang, J.; Sun, N.; Huang, K.; Li, H.; Wang, Z.; Huang, K.; Wang, L. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016, 41, 210–223. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Mu, Q.; Liu, P.; Jia, S.; Chen, L.; Zhang, X.; Wang, K.; Wei, Y. Genipin-cross-linked silk sericin/poly(N-isopropylacrylamide) IPN hydrogels: Color reaction between silk sericin and genipin, pore shape and thermo-responsibility. Mater. Chem. Phys. 2015, 166, 133–143. [Google Scholar] [CrossRef]
- Camman, M.; Joanne, P.; Brun, J.; Marcellan, A.; Dumont, J.; Agbulut, O.; Hélary, C. Anisotropic dense collagen hydrogels with two ranges of porosity to mimic the skeletal muscle extracellular matrix. Biomater. Adv. 2023, 144, 213219. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Wu, F.; Cao, W.; Zhou, T.; Wang, Z.; Tu, Z.; Tu, C.; Gou, Z.; Zhang, L.; et al. A Macroporous Cryogel with Enhanced Mechanical Properties for Osteochondral Regeneration In vivo. Chin. J. Polym. Sci. Engl. Ed. 2023, 41, 40–50. [Google Scholar] [CrossRef]
- Kumar, P.; Pillay, V.; Choonara, Y. Macroporous chitosan/methoxypoly(ethylene glycol) based cryosponges with unique morphology for tissue engineering applications. Sci. Rep. 2021, 11, 3104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Chu, A.; Jackson, J.; Lin, K.; Lim, C.J.; Lange, D.; Chiao, M. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices. Acta Biomater. 2018, 70, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Dursun Usal, T.; Yucel, D.; Hasirci, V. A novel GelMA-pHEMA hydrogel nerve guide for the treatment of peripheral nerve damages. Int. J. Biol. Macromol. 2019, 121, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, L.; Siemsen, K.; Appiah, C.; Rajput, S.; Heitmann, A.; Selhuber-Unkel, C.; Staubitz, A. A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels 2022, 8, 258. [Google Scholar] [CrossRef]
- Sreekumaran, S.; Radhakrishnan, A.; Rauf, A.; Kurup, G. Nanohydroxyapatite incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate hydrogel for bone tissue engineering. Prog. Biomater. 2021, 10, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, C.; Yu, X.; Zhang, W. Recent advances of PVA-based hydrogels in cartilage repair application. J. Mater. Res. Technol. 2023, 4, 2279–2298. [Google Scholar] [CrossRef]
- Frost, M.J.; Lyons, S.G.; Geever, L.M. Synthesis and characterisation of novel poly(N-vinylcaprolactam) hydrogels, cross-linked with N-hydroxyethyl acrylamide (HEA). Mater. Today 2019, 10, 436–440. [Google Scholar] [CrossRef]
- Cerda-Sumbarda, Y.D.; Domínguez-González, C.; Zizumbo-López, A.; Licea-Claverie, A. Thermoresponsive nanocomposite hydrogels with improved properties based on poly(N-vinylcaprolactam). Mater. Today Commun. 2020, 24, 101041. [Google Scholar] [CrossRef]
- Tatiana, N.M.; Cornelia, V.; Tatia, R.; Aurica, C. Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application. Colloid. Polym. Sci. 2018, 296, 1555–1571. [Google Scholar] [CrossRef]
- Chatterjee, S.; Upadhyay, P.; Mishra, M.; Akshara, M.R.; Zaidi, Z.S.; Iqbal, S.F.; Misra, S.K. Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Adv. 2020, 10, 36751–36777. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Ghomi, E.R.; Ramakrishna, S. pHEMA: An overview for biomedical applications. Int. J. Mol. Sci. 2021, 22, 6376. [Google Scholar] [CrossRef]
- Macková, H.; Hlídková, H.; Kaberova, Z.; Proks, V.; Kučka, J.; Patsula, V.; Vetrik, M.; Janoušková, O.; Podhorská, B.; Pop-Georgievski, O.; et al. Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering. Mater. Sci. Eng. C 2021, 131, 112500. [Google Scholar] [CrossRef] [PubMed]
- Rossos, A.K.; Banti, C.N.; Kalampounias, A.G.; Papachristodoulou, C.; Kordatos, K.; Zoumpoulakis, P.; Mavromoustakos, T.; Kourkoumelis, N.; Hadjikakou, S.K. pHEMA@AGMNA-1: A novel material for the development of antibacterial contact lens. Mater. Sci. Eng. C 2020, 111, 110770. [Google Scholar] [CrossRef]
- Tanan, W.; Panpinit, S.; Saengsuwan, S. Comparison of microwave-assisted and thermal-heated synthesis of P(HEMA-co-AM)/PVA interpenetrating polymer network (IPN) hydrogels for Pb(II) removal from aqueous solution: Characterization, adsorption and kinetic study. Eur. Polym. J. 2021, 143, 110193. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Xing, X.; Qu, W.; Chen, S.; Zhang, Y. Preparation of porous semi-IPN temperature-sensitive hydrogel-supported nZVI and its application in the reduction of nitrophenol. J. Environ. Sci. 2019, 82, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Yang, N.; Zhang, H.; Chen, L.; Tao, L.; Wei, L.; Liu, H.; Luo, Y. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Mater. Sci. Eng. C 2015, 48, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.Y.; Kweon, H.; Oh, J. Sericin for tissue engineering. Appl. Sci. 2020, 10, 8457. [Google Scholar] [CrossRef]
- Kongprayoon, A.; Ross, G.; Limpeanchob, N.; Mahasaranon, S.; Punyodom, W.; Topham, P.D.; Ross, S. Bio-derived and biocompatible poly(lactic acid)/silk sericin nanogels and their incorporation within poly(lactide-co-glycolide) electrospun nanofibers. Polym. Chem. 2022, 13, 3343–3357. [Google Scholar] [CrossRef]
- Yooyod, M.; Ross, G.; Limpeanchob, N.; Mahasaranon, S.; Ross, S. Investigation of silk sericin conformational structure for fabrication into porous scaffolds with poly(vinyl alcohol) for skin tissue reconstruction. Eur. Polym. J. 2016, 81, 43–52. [Google Scholar] [CrossRef]
- Ross, S.; Yooyod, M.; Limpeanchob, N.; Mahasaranon, S.; Suphrom, N.; Ross, G. Novel 3D porous semi-IPN hydrogel scaffolds of silk sericin and poly(N-hydroxyethyl acrylamide) for dermal reconstruction. Express Polym. Lett. 2017, 11, 719–730. [Google Scholar] [CrossRef]
- Tuancharoensri, N.; Ross, G.; Punyodom, W.; Mahasaranon, S.; Jongjitwimol, J.; Topham, P.D.; Ross, S. Multifunctional core–shell electrospun nanofibrous fabrics of poly(vinyl alcohol)/silk sericin (core) and poly(lactide-co-glycolide) (shell). Polym. Int. 2022, 71, 266–275. [Google Scholar] [CrossRef]
- Sonjan, S.; Ross, G.; Mahasaranon, S.; Sinkangam, B.; Intanon, S.; Ross, S. Biodegradable Hydrophilic Film of Crosslinked PVA/Silk Sericin for Seed Coating: The Effect of Crosslinker Loading and Polymer Concentration. J. Polym. Environ. 2021, 29, 323–334. [Google Scholar] [CrossRef]
- Kumkun, P.; Tuancharoensri, N.; Ross, G.; Mahasaranon, S.; Jongjitwimol, J.; Topham, P.D.; Ross, S. Green fabrication route of robust, biodegradable silk sericin and poly(vinyl alcohol) nanofibrous scaffolds. Polym. Int. 2019, 68, 1903–1913. [Google Scholar] [CrossRef]
- Kaberova, Z.; Karpushkin, E.; Nevoralova, M.; Vetrik, M.; Slouf, M.; Duskova-Smrckova, D. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers 2020, 12, 578. [Google Scholar] [CrossRef]
- Passos, M.F.; Dias, D.R.C.; Bastos, G.N.T.; Jardini, A.L.; Benatti, A.C.B.; Dias, C.G.B.T.; Filho, R. pHEMA hydrogels: Synthesis, kinetics and in vitro tests. J. Therm. Anal. Calorim. 2016, 125, 361–368. [Google Scholar] [CrossRef]
- Kudłacik-Kramarczyk, S.; Drabczyk, A.; Głąb, M.; Alves-Lima, D.; Lin, H.; Douglas, T.E.L.; Kuciel, S.; Zagórska, A.; Tyliszczak, B. Investigations on the impact of the introduction of the Aloe vera into the hydrogel matrix on cytotoxic and hydrophilic properties of these systems considered as potential wound dressings. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 111977. [Google Scholar] [CrossRef] [PubMed]
System | Samples | HEMA (g) | MBAAm (%wt) | TEMED (%wt) | APS (%wt) | Silk Sericin | Total Volume (mL) | |
---|---|---|---|---|---|---|---|---|
SS (% w/v) | DMU (%wt) | |||||||
Control | PHEMA | 2.154 | - | 0.50 | 0.25 | - | - | 6.50 |
C-PHEMA | 2.154 | 0.50 | 0.50 | 0.25 | - | - | 6.50 | |
A | C-PHEMA/1.25 SS | 2.154 | 0.50 | 0.50 | 0.25 | 1.25 | - | 6.50 |
C-PHEMA/2.50 SS | 2.154 | 0.50 | 0.50 | 0.25 | 2.50 | - | 6.50 | |
C-PHEMA/5.00 SS | 2.154 | 0.50 | 0.50 | 0.25 | 5.00 | - | 6.50 | |
B | C-PHEMA/1.25 pC-SS | 2.154 | 0.50 | 0.50 | 0.25 | 1.25 | 5.57 | 6.50 |
C-PHEMA/2.50 pC-SS | 2.154 | 0.50 | 0.50 | 0.25 | 2.50 | 5.57 | 6.50 | |
C-PHEMA/5.00 pC-SS | 2.154 | 0.50 | 0.50 | 0.25 | 5.00 | 5.57 | 6.50 |
Samples | Mean Swelling after 24 h ± SD |
---|---|
PHEMA | 111.5 ± 0.9 |
C-PHEMA | 159.2 ± 2.5 |
C-PHEMA/1.25 SS | 256.8 ± 2.9 |
C-PHEMA/2.50 SS | 232.7 ± 0.8 |
C-PHEMA/5.00 SS | 290.6 ± 4.7 |
C-PHEMA/1.25 pC-SS | 158.3 ± 3.8 |
C-PHEMA/2.50 pC-SS | 240.8 ± 5.2 |
C-PHEMA/5.00 pC-SS | 209.8 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuancharoensri, N.; Sonjan, S.; Promkrainit, S.; Daengmankhong, J.; Phimnuan, P.; Mahasaranon, S.; Jongjitwimol, J.; Charoensit, P.; Ross, G.M.; Viennet, C.; et al. Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers 2023, 15, 4052. https://doi.org/10.3390/polym15204052
Tuancharoensri N, Sonjan S, Promkrainit S, Daengmankhong J, Phimnuan P, Mahasaranon S, Jongjitwimol J, Charoensit P, Ross GM, Viennet C, et al. Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers. 2023; 15(20):4052. https://doi.org/10.3390/polym15204052
Chicago/Turabian StyleTuancharoensri, Nantaprapa, Sukhonthamat Sonjan, Sudarat Promkrainit, Jinjutha Daengmankhong, Preeyawass Phimnuan, Sararat Mahasaranon, Jirapas Jongjitwimol, Pensri Charoensit, Gareth M. Ross, Céline Viennet, and et al. 2023. "Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties" Polymers 15, no. 20: 4052. https://doi.org/10.3390/polym15204052
APA StyleTuancharoensri, N., Sonjan, S., Promkrainit, S., Daengmankhong, J., Phimnuan, P., Mahasaranon, S., Jongjitwimol, J., Charoensit, P., Ross, G. M., Viennet, C., Viyoch, J., & Ross, S. (2023). Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers, 15(20), 4052. https://doi.org/10.3390/polym15204052