Self-Pierce Riveting: Development and Assessment for Joining Polymer—Metal Hybrid Structures in Lightweight Automotive Applications
Abstract
:1. Introduction
2. Self-Pierce Riveting
2.1. Process Overview
2.2. A Regular Self-Pierce Riveting System
2.3. Principles behind the Operation
2.3.1. Deformation Behavior of the Workpiece and Rivet Material
2.3.2. Findings of Previous Research
3. Factors and Response Analysis Related to Self-Pierce Riveting
3.1. Implications of the Quantity of Pre-Straining
3.2. Implications of the Edge Distance
3.3. Displacement Behavior of the Various Self-Pierce Riveted Joints
3.4. Failure Behavior of Various Self-Pierce Riveted Joints
4. The Prominent Factors Which Influence the Quality of the Joint
5. Scope of Self-Pierce Riveting among Other Contemporary Processes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meschut, G.; Hahn, O.; Janzen, V.; Olfermann, T. Innovative joining technologies for multi-material structures. Weld World 2014, 58, 65–75. [Google Scholar] [CrossRef]
- Jiang, H.; Liao, Y.; Gao, S.; Li, G.; Cui, J. Comparative study on joining quality of electromagnetic driven self-piecing riveting, adhesive and hybrid joints for Al/steel structure. Thin Walled Struct. 2021, 164, 107903. [Google Scholar] [CrossRef]
- Friedrich, H.E.; Kopp, D.I.G. New materials and construction methods for multi-material-design, lightweight construction and modularity in future vehicle concepts. Mater. Sci. Forum 2007, 539–543, 51–57. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, L.; Zhan, Z.; Huang, S.; Liu, X.; Chen, Q.; Zhao, H.; Han, W. A framework for calibration of self-piercing riveting process simulation model. J. Manuf. Process. 2022, 76, 223–235. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zheng, X.; Li, J.; Li, X.; Zhu, W.; Yanagimoto, J. A self-piercing riveting method for joining of continuous carbon fiber reinforced composite and aluminum alloy sheets. Compos. Struct. 2021, 259, 113219. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of polymers and polymer–metal hybrid structures recent developments and trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Hynes, N.R.J. Prospects of joining multi-material structures. AIP Conf. Proc. 2018, 1953, 1300211–1300215. [Google Scholar]
- Kah, P.; Suoranta, R.; Martikainen, J.; Magnus, C. Techniques for joining dissimilar materials: Metals and polymers. Adv. Mater. Sci. Eng. 2014, 36, 152–164. [Google Scholar]
- Sankaranarayanan, R.; Hynes, N.R.J. Friction riveting for joining of wide range of dissimilar materials. AIP Conf. Proc. 2019, 2142, 1500041–1500045. [Google Scholar]
- Hynes, N.R.J.; Sankaranarayanan, R.; Sujana, J.A.J. A decision tree approach for energy efficient friction riveting of polymer/metal multi-material lightweight structures. J. Clean. Prod. 2021, 292, 125317. [Google Scholar] [CrossRef]
- Alves, L.M.; Afonso, R.M.; Martins, P.A.F. Double-sided self-pierce riveting of polymer sheets. J. Adv. Join. Process. 2021, 3, 100051. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Hynes, N.R.J.; Li, D.; Chrysanthou, A.; Amancio-Filho, S.T. Review of Research on Friction Riveting of Polymer/Metal Light Weight Multi-Material Structures. Trans. Indian. Inst. Met. 2021, 74, 2541–2553. [Google Scholar] [CrossRef]
- Sun, Z.; Karppi, R. The application of electron beam welding for the joining of dissimilar metals: An overview. J. Mater. Process. Technol. 1996, 59, 257–267. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L. Resistance welding of thermosetting composite/thermoplastic composite joints. Compos. Part A Appl. Sci. 2001, 32, 1603–1612. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Vignesh, N.J.; Velu, P.S. Low-speed friction riveting: A new method for joining polymer/metal hybrid structures for aerospace applications. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–16. [Google Scholar] [CrossRef]
- Martinsen, K.; Hu, S.J.; Carlson, B.E. Joining of dissimilar materials. CIRP Ann. Manuf. Technol. 2015, 64, 679–699. [Google Scholar] [CrossRef]
- Kleiner, M.; Geiger, M.; Klaus, A. Manufacturing of lightweight components by metal forming. CIRP Ann. 2003, 52, 521–542. [Google Scholar] [CrossRef]
- Rusia, A.; Weihe, S. Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength. J. Manuf. Process. 2020, 57, 519–532. [Google Scholar] [CrossRef]
- Gay, A.; Lefebvre, F.; Bergamo, S.; Valiorgue, F.; Chalandon, P.; Michel, P.; Bertrand, P. Fatigue performance of a self-piercing rivet joint between aluminum and glass fiber reinforced thermoplastic composite. Int. J. Fatigue 2015, 83, 127–134. [Google Scholar] [CrossRef]
- Jeon, S.W.; Cho, Y.H.; Han, M.G.; Chang, S.H. Design of carbon/epoxy-aluminum hybrid upper arm of the pantograph of high-speed trains using adhesive bonding technique. Compos. Struct. 2016, 152, 538–545. [Google Scholar] [CrossRef]
- Saleem, M.; Zitoune, R.; Sawi, I.E.; Bougherara, H. Role of the surface quality on the mechanical behaviour of CFRP bolted composite joints. Int. J. Fatigue 2015, 80, 246–256. [Google Scholar] [CrossRef]
- Olajide, S.O.; Arhatari, B.D. Recent progress on damage mechanisms in polymeric adhesively bonded high-performance composite joints under fatigue. Int. J. Fatigue 2017, 95, 45–63. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, T.; Li, G.; Zhang, X.; Cui, J. Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic aluminum alloy lap joints using Weibull distribution. Int. J. Fatigue 2017, 105, 180–189. [Google Scholar] [CrossRef]
- Li, D.; Chrysanthou, A.; Patel, I.; Williams, G. Self-piercing riveting-a review. Int. J. Adv. Manuf. Technol. 2017, 92, 1777–1824. [Google Scholar] [CrossRef]
- Karathanasopoulos, N.; Pandya, K.S.; Mohr, D. Self-piercing riveting process: Prediction of joint characteristics through finite element and neural network modeling. J. Adv. Join. Process. 2021, 3, 100040. [Google Scholar] [CrossRef]
- Gausden, D.; Gunn, I. Self piercing rivets give strong sealed joints. Des. Eng. 1976, 55–57. [Google Scholar]
- Sunday, S.P. Self-piercing rivets for aluminum components. SAE Worl. Cong. 1983.
- Kotadia, H.R.; Rahnama, A.; Sohn, I.R.; Kim, J.; Sridhar, S. Performance of dissimilar metal Self-Piercing Riveting (SPR) joint and coating behaviour under corrosive environment. J. Manuf. Process. 2019, 39, 259–270. [Google Scholar] [CrossRef]
- Patrick, E.; Sharp, M. Joining aluminum auto body structure. SAE World Cong. 1992.
- Bansal, P.; Zheng, Z.; Pan, B.; Meng, Y.; Wen, W.; Banu, M.; Li, J.; Carlson, B.E.; Shao, C.; Wang, P.; et al. Corrosion of Al-Fe self-pierce riveting joints with multiphysics-based modeling and experiments. J. Manuf. Process. 2023, 95, 434–445. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Huang, L.; Chen, Q.; Tong, C.; Fang, Y.; Han, W.; Zhu, P. Automatic identification framework of the geometric parameters on self-piercing riveting cross-section using deep learning. J. Manuf. Process. 2022, 83, 427–437. [Google Scholar] [CrossRef]
- Rao, Z.; Ou, L.; Wang, Y.; Wang, P.-C. A self-piercing-through riveting method for joining of discontinuous carbon fiber reinforced nylon 6 composite. Compos. Struct. 2020, 237, 111841. [Google Scholar] [CrossRef]
- Hulbert, J.P. Riveting without prepunching. J. Mech. Des. 1972. [Google Scholar]
- Anonymous. Self-piercing rivets attach can handle. Eng. Mater. Des. 1975, 19. [Google Scholar]
- Moss, S.; Mahendran, M. Structural behaviour of self-piercing riveted connections in steel framed housing. In Proceedings of the Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL, USA, 17–18 October 2002. [Google Scholar]
- Moss, S.R.; Mahendran, M. Structural behaviour of self piercing riveted connections in G300 and G550 thin sheet steels. In Proceedings of the Int’l Conference on Advances in Structures; AA Balkema Publishers: Amsterdam, The Netherlands, 2003; pp. 275–280. [Google Scholar]
- Litherland, H. Self-piercing riveting for aluminium applications. In Proceedings of the Seventh International Conference INALCO’98, Cambridge, UK, 15–17 April 1998. [Google Scholar]
- Karathanasopoulos, N.; Pandya, K.S.; Mohr, D. An experimental and numerical investigation of the role of rivet and die design on the self-piercing riveting joint characteristics of aluminum and steel sheets. J. Manuf. Process. 2021, 69, 290–302. [Google Scholar] [CrossRef]
- Ying, L.; Gao, T.; Dai, M.; Hu, P.; Dai, J. Towards joinability of thermal self-piercing riveting for AA7075-T6 aluminum alloy sheets under quasi-static loading conditions. Int. J. Mech. Sci. 2021, 189, 105978. [Google Scholar] [CrossRef]
- Wang, B.; Hao, C.Y.; Zhang, J.S.; Zhang, H.A. New self-piercing riveting process and strength evaluation. J. Manuf. Sci. Eng. Trans. ASME 2006, 128, 580–587. [Google Scholar] [CrossRef]
- Westgate, S.; Doo, R.; Liebrecht, F.; Braeunling, S.; Mattsson, T.; Stromberg, K.O. The development of lightweight self-piercing riveting equipment. In Proceedings of the SAE 2001 World Congress, Detroit, MI, USA, 5–8 March 2001. [Google Scholar]
- Atlascopco. Available online: https://www.atlascopco.com/en-uk/itba/products/joining-solutions/self-pierce-riveting/henrob-self-piercing-studs (accessed on 12 November 2022).
- Zhao, H.; Han, L.; Liu, Y.; Liu, X. Analysis of joint formation mechanisms for self-piercing riveting (SPR) process with varying joining parameters. J. Manuf. Process. 2022, 73, 668–685. [Google Scholar] [CrossRef]
- Cai, W.; Wang, P.C.; Yang, W. Assembly dimensional prediction for self-piercing riveted aluminum panels. Int. J. Mach. Tools Manuf. 2005, 45, 695–704. [Google Scholar] [CrossRef]
- Budde, L.; Lappe, W.; Liebrecht, F. Further developments in the self-piercing rivet technology. Blec. Roh. Prof. 1992, 39, 310–314. [Google Scholar]
- Lappe, W.; Budde, L. Possibilities for Monitoring and Controlling the Mechanical Process in Sheet Metal Assembly; Paderborn University: Paderborn, Germania, 1993. [Google Scholar]
- King, R.P.; Sullivan, J.M.O.; Spurgeon, D.; Bentley, P. Setting load requirements and fastening strength in the self-pierce riveting process. In Proceedings of the Eleventh National Conference on Manufacturing Research, Leicester, UK, 12–15 September 1995. [Google Scholar]
- Atzeni, E.; Ippolito, R.; Settineri, L. Experimental and numerical appraisal of self-piercing riveting. CIRP Ann. Manuf. Technol. 2009, 58, 17–20. [Google Scholar] [CrossRef]
- Haque, R.; Beynon, J.H.; Durandet, Y. Characterization of force-displacement curve in self-pierce riveting. Sci. Technol. Weld. Join. 2012, 17, 476–488. [Google Scholar] [CrossRef]
- Abe, Y.; Kato, T.; Mori, K. Joinability of aluminium alloy and mild steel sheets by self-piercing rivet. J. Mater. Process. Technol. 2006, 177, 417–421. [Google Scholar] [CrossRef]
- Ma, Y.; Lou, M.; Li, Y.; Lin, Z. Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges. J. Mater. Process. Technol. 2018, 251, 282–294. [Google Scholar] [CrossRef]
- Hahn, O.; Horstmann, M. Mechanical joining of magnesium components by means of inductive heating-realization and capability. Mater. Sci. Forum 2007, 539–543, 1638–1643. [Google Scholar] [CrossRef]
- He, X.; Zhao, L.; Deng, C.; Xing, B.; Gu, F.; Ball, A. Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy. Mater. Des. 2014, 65, 923–933. [Google Scholar] [CrossRef]
- Xing, B.; He, X.; Wang, Y.; Yang, H.; Deng, C. Study of mechanical properties for copper alloy H62 sheets joined by self-piercing riveting and clinching. J. Mater. Process. Technol. 2015, 216, 28–36. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Xing, B.; Zhao, L.; Lu, Y.; Gu, F.; Ball, A. Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys. Mater. Des. 2016, 97, 108–117. [Google Scholar] [CrossRef]
- He, X.; Wang, Y.; Lu, Y.; Zeng, K.; Gu, F.; Ball, A. Self-piercing riveting of similar and dissimilar titanium sheet materials. Int. J. Adv. Manuf. Technol. 2015, 80, 9–12. [Google Scholar] [CrossRef]
- Pickin, C.G.; Young, K.; Tuersley, I. Joining of light weight sandwich sheets to aluminium using self-pierce riveting. Mater. Des. 2007, 28, 2361–2365. [Google Scholar] [CrossRef]
- Hoang, N.-H.; Porcaro, R.; Langseth, M.; Hanssen, A.-G. Self-piercing riveting connections using aluminium rivets. Int. J. Solids Struct. 2010, 47, 427–439. [Google Scholar] [CrossRef]
- Han, L.; Young, K.W.; Chrysanthou, A.; O’Sullivan, J.M. The effect of pre-straining on the mechanical behaviour of self-piercing riveted aluminium alloy sheets. Mater. Des. 2006, 27, 1108–1113. [Google Scholar] [CrossRef]
- Li, D.; Han, L.; Thornton, M.; Shergold, M. Influence of edge distance on quality and static behaviour of self-piercing riveted aluminium joints. Mater. Des. 2012, 34, 22–31. [Google Scholar] [CrossRef]
- Rao, H.M.; Kang, J.; Huff, G.; Avery, K. Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite. Int. J. Fatigue 2018, 113, 11–22. [Google Scholar] [CrossRef]
- Briskham, P.; Blundell, N.; Han, L.; Hewitt, R.; Young, K. Comparison of self-pierce riveting, resistance spot welding and spot friction joining for aluminium automotive sheet. SAE Int. 2006. [Google Scholar]
- Khanna, S.K.; Long, X.; Krishnamoorthy, S.; Agrawal, H.N. Fatigue properties and failure characterization of self-piercing riveted 6111 aluminium sheet joints. Sci. Technol. Weld. Join. 2006, 11, 544–549. [Google Scholar] [CrossRef]
- Blacket, S. The self pierce riveting process comes of age. In Proceedings of the Materials in Welding and Joining Conference, Adelaide, Australia, 23–24 August 1995. [Google Scholar]
- Doo, R. Automotive body construction using self-piercing riveting. In Automotive Manufacturing International; 1993. [Google Scholar]
- Krause, A.R.; Chernenkoff, A.R.A.A. Comparative study of the fatigue behaviour of spot welded and mechanically fastened aluminium joints. SAE Worl. Cong. 1995. [Google Scholar]
- Mizukoshi, H.; Okada, H. Fatigue properties of mechanical fastening joints. Mater. Sci. Forum 1997, 242, 231–238. [Google Scholar] [CrossRef]
- Han, L.; Thornton, M.; Shergold, M.A. Comparison of the mechanical behaviour of self-piercing riveted and resistance spot welded aluminium sheets for the automotive industry. Mater. Des. 2010, 31, 1457–1467. [Google Scholar] [CrossRef]
- Booth, G.S.; Olivier, C.R.; Westgate, S.A.; Liebrecht, F.; Braunling, S. Self-piercing riveted joints and resistance spot welded joints in steel and aluminium. SAE Worl. Cong. 2000. [Google Scholar]
- Galtier, A.; Gacel, J.N. Fatigue behavior of mechanical joining for HSS grades. SAE Int. 2002. [Google Scholar]
- Westgate, S. The resistance spot welding of high and ultra high strength steels. In Proceedings of the Third International Seminar on Advances in Resistance Welding, Berlin, Germany, 16–17 November 2004. [Google Scholar]
- Dannbauer, H.; Gaier, C.; Dutzler, E.; Halaszi, C. Development of a model for the stiffness and life time prediction of self piercing riveted joints in automotive components. Mater. Test. 2006, 48, 576–581. [Google Scholar] [CrossRef]
- Svensson, L.E.; Larsson, J.K. Welding and joining of high-performance car bodies, in trends in welding research. ASM Inter. 2002. [Google Scholar]
- Westgate, S.A.; Whittaker, M.C. Press joining and self piercing riveting for sheet joining-joint formation and mechanical properties. TWI Rep. 1994. [Google Scholar]
- Razmjoo, G.R.; Westgate, S.A. Fatigue properties of clinched, self piercing riveted and spot welded joints in steel and aluminium alloy sheet. TWI Rep. 1999. [Google Scholar]
- Mori, K.; Abe, Y.; Kato, T. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. J. Mater. Process. Technol. 2012, 212, 1900–1905. [Google Scholar] [CrossRef]
- Li, B.; Fatemi, A. An experimental investigation of deformation and fatigue behavior of coach peel riveted joints. Int. J. Fatigue 2006, 28, 9–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaranarayanan, R.; Hynes, N.R.J.; Nikolova, M.P.; Królczyk, J.B. Self-Pierce Riveting: Development and Assessment for Joining Polymer—Metal Hybrid Structures in Lightweight Automotive Applications. Polymers 2023, 15, 4053. https://doi.org/10.3390/polym15204053
Sankaranarayanan R, Hynes NRJ, Nikolova MP, Królczyk JB. Self-Pierce Riveting: Development and Assessment for Joining Polymer—Metal Hybrid Structures in Lightweight Automotive Applications. Polymers. 2023; 15(20):4053. https://doi.org/10.3390/polym15204053
Chicago/Turabian StyleSankaranarayanan, Ramakrishnan, Navasingh Rajesh Jesudoss Hynes, Maria P. Nikolova, and Jolanta B. Królczyk. 2023. "Self-Pierce Riveting: Development and Assessment for Joining Polymer—Metal Hybrid Structures in Lightweight Automotive Applications" Polymers 15, no. 20: 4053. https://doi.org/10.3390/polym15204053
APA StyleSankaranarayanan, R., Hynes, N. R. J., Nikolova, M. P., & Królczyk, J. B. (2023). Self-Pierce Riveting: Development and Assessment for Joining Polymer—Metal Hybrid Structures in Lightweight Automotive Applications. Polymers, 15(20), 4053. https://doi.org/10.3390/polym15204053