Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Emulsions
2.3. Application of the Emulsions onto Textile Support
2.4. Characterization of Emulsions
2.4.1. Microscopic Evaluation of the Emulsions
2.4.2. pH Measurements
2.4.3. Creaming Index (CI)
2.5. Characterization of the Materials Treated with the Obtained Emulsions
2.5.1. Statistical Analysis
2.5.2. Sensorial Evaluation
2.5.3. SEM-EDX Analysis
2.5.4. Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR) Analysis
2.5.5. GC-MS Method
2.5.6. Release Study of the Peppermint Essential Oil
- -
- release in artificial perspiration solutions;
- -
- the release of volatile components into the air.
Release of Essential Oil in Artificial Perspiration Solutions
Release of Volatile Components into the Air
2.5.7. ‘In Vitro’ Evaluation of the Antibacterial Activity
2.5.8. Analysis of the Comfort Indices
3. Results and Discussions
3.1. Optical Microscopy
3.2. pH Determination
3.3. Stability of the Prepared Emulsions
3.4. Characterization of the Emulsion-Treated Cotton Samples
3.4.1. Sensorial Evaluation
3.4.2. SEM-EDX Analysis
3.4.3. FTIR Analysis
3.4.4. Release of Essential Oil in Artificial Perspiration Solution
3.4.5. Release of the Volatile Components into the Air
- -
- After 3 h of air exposure, in all 3 samples analyzed, volatile components of the essential oil of peppermint were found in the range of 90.10–92.72% compared to the initial moment;
- -
- After 6 h of air exposure, the volatile components of the remaining essential oil of peppermint are 63.12% (sample TE1), 74.08% (sample TE3) and 55.65% (sample TE6).
- -
- The highest amount of initial and residual volatile peppermint oil after 3 and 6 h, respectively, was found in sample TE3 and the lowest amount in sample TE6.
- -
- Thus, sample TE3 not only incorporates but also retains the largest amount of essential peppermint oil.
- -
- The smaller amount of mint essential oil retained by sample TE6 (which did not contain wax) compared to samples TE1 and TE3 (which contained beeswax) can be explained by the fact that wax, a hydrophobic compound, retains the essential oil more strongly in the emulsion, respectively, on the surface of the textile material.
3.4.6. Comfort Characteristics of Treated and Untreated Samples
3.4.7. Antibacterial Activity of the Treated Textile Support
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okazaki, K.; Sumitani, H.; Takahashi, K.; Isegawa, Y. Mode of Antifungal Action of Daito-Gettou (Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods 2023, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Borotová, P.; Čmiková, N.; Galovičová, L.; Vukovic, N.L.; Vukic, M.D.; Tvrdá, E.; Kowalczewski, P.Ł.; Kluz, M.I.; Puchalski, C.; Schwarzová, M.; et al. Antioxidant, Antimicrobial, and Anti-Insect Properties of Boswellia carterii Essential Oil for Food Preservation Improvement. Horticulturae 2023, 9, 333. [Google Scholar] [CrossRef]
- Grădinaru, A.C.; Aprotosoaie, A.C.; Trifan, A.; Spac, A.; Brebu, M.; Miron, A. Interactions between cardamom essential oil and conventional antibiotics against Staphylococcus Aureus clinical isolates. Farmacia 2014, 62, 1214–1222. Available online: https://farmaciajournal.com/arhiva/201406/art-17-Gradinaru_Aprotosoaie_1214-1222.pdf (accessed on 3 April 2023).
- Grădinaru, A.C.; Trifan, A.; Șpac, A.; Brebu, M.; Miron, A.; Aprotosoaie, A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: Combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol. 2018, 67, 449–457. [Google Scholar] [CrossRef]
- Unalan, I.; Slavik, B.; Buettner, A.; Goldmann, W.H.; Frank, G.; Boccaccini, A.R. Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (ε-caprolactone) (PCL) Electrospun Fiber Mats for Wound Healing. Front. Bioeng. Biotechnol. 2019, 7, 346. [Google Scholar] [CrossRef]
- Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial activity of essential plant oils and their major components. Heliyon 2021, 7, e06835. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar] [CrossRef]
- Froiio, F.; Mosaddik, A.; Morshed, M.T.; Paolino, D.; Fessi, H.; Elaissari, A. Edible Polymers for Essential Oils Encapsulation: Application in Food Preservation. Ind. Eng. Chem. Res. 2019, 58, 20932–20945. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, L. Anxiolytic effect of essential oils and their constituents: A review. J. Agric. Food Chem. 2019, 67, 13790–13808. [Google Scholar] [CrossRef]
- Mahdavikian, S.; Fallahi, M.; Khatony, A. Comparing the Effect of Aromatherapy with Peppermint and Lavender Essential Oils on Fatigue of Cardiac Patients: A Randomized Controlled Trial. Evid.-Based Complement. Altern. Med. 2021, 2021, 9925945. [Google Scholar] [CrossRef]
- Karadag, E.; Baglama, S.S. The Effect of Aromatherapy on Fatigue and Anxiety in Patients Undergoing Hemodialysis Treatment: A randomized controlled study. Holist. Nurs. Pract. 2019, 33, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A. Therapeutic uses of peppermint–A review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- Braden, R.; Reichow, S.; Halm, M.A. The use of the essential oil lavandin to reduce preoperative anxiety in surgical patients. J. Perianesthesia Nurs. 2009, 24, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.; Ayers, C.; Peterson, C.; Kansagara, D. Aromatherapy and essential oils: A map of the evidence. In VA Evidence Synthesis Program Reports; Department of Veterans Affairs (US): Washington, DC, USA, 2019. [Google Scholar]
- Hamzeh, S.; Safari-Faramani, R.; Khatony, A. Effects of Aromatherapy with Lavender and Peppermint Essential Oils on the Sleep Quality of Cancer Patients: A Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2020, 2020, 7480204. [Google Scholar] [CrossRef]
- Radivojac, A.; Bera, O.; Zeković, Z.; Teslić, N.; Mrkonjić, Ž.; Kovačević, D.B.; Putnik, P.; Pavlić, B. Extraction of Peppermint Essential Oils and Lipophilic Compounds: Assessment of Process Kinetics and Environmental Impacts with Multiple Techniques. Molecules 2021, 26, 2879. [Google Scholar] [CrossRef]
- Bezerra, F.M.; Carmona, O.G.; Carmona, C.G.; Lis, M.J.; de Moraes, F.F. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose 2016, 23, 1459–1470. [Google Scholar] [CrossRef]
- Cerempei, A.; Muresan, E.I.; Cimpoesu, N. Biomaterials with controlled release of geranium essential oil. J. Essent. Oil Res. 2014, 26, 267–273. [Google Scholar] [CrossRef]
- Adepu, S.; Khandelwal, M. Bacterial cellulose with microencapsulated antifungal essential oils: A novel double barrier release system. Materialia 2020, 9, 100585. [Google Scholar] [CrossRef]
- Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 2019, 137, 1245–1255. [Google Scholar] [CrossRef]
- Yilmaztekin, M.; Lević, S.; Kalušević, A.; Cam, M.; Bugarski, B.; Rakić, V.; Pavlović, V.; Nedović, V. Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. J. Microencapsul. 2019, 36, 109–119. [Google Scholar] [CrossRef]
- Zhang, W.; Ronca, S.; Mele, E. Electrospun Nanofibres Containing Antimicrobial Plant Extracts. Nanomaterials 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Anis, A.; Pal, K.; Al-Zahrani, S.M. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers 2021, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Froiio, F.; Ginot, L.; Paolino, D.; Lebaz, N.; Bentaher, A.; Fessi, H.; Elaissari, A. Essential Oils-Loaded Polymer Particles: Preparation, Characterization and Antimicrobial Property. Polymers 2019, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.L.S.; Campina, F.F.; Costa, M.D.S.; da Cruz, R.P.; de Freitas, T.S.; dos Santos, A.T.L.; Cruz, B.G.; Júnior, D.M.d.S.; Lima, I.K.C.; Xavier, M.R.; et al. Antibacterial and modulatory activities of beta-cyclodextrin complexed with (+)-beta-citronellol against multidrug-resistant strains. Microb. Pathog. 2021, 156, 104928. [Google Scholar] [CrossRef]
- Peers, S.; Montembault, A.; Ladavière, C. Chitosan Hydrogels for Sustained Drug Delivery. J. Control. Release 2020, 326, 150–163. [Google Scholar] [CrossRef]
- Liu, J.; Tian, B.; Liu, Y.; Wan, J.-B. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int. J. Mol. Sci. 2021, 22, 13516. [Google Scholar] [CrossRef]
- Kiti, K.; Suwantong, O. Bilayer Wound Dressing Based on Sodium Alginate Incorporated with Curcumin-β-Cyclodextrin Inclusion Complex/Chitosan Hydrogel. Int. J. Biol. Macromol. 2020, 164, 4113–4124. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Barati, A.; Tonelli, A.E.; Hamedi, H. Chitosan-Based Hydrogels Loading with Thyme Oil Cyclodextrin Inclusion Compounds: From Preparation to Characterization. Eur. Polym. J. 2020, 122, 109303. [Google Scholar] [CrossRef]
- Gao, Y.N.; Wang, Y.; Yue, T.N.; Weng, Y.X.; Wang, M. Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding. J. Colloid Interface Sci. 2021, 582, 112–123. [Google Scholar] [CrossRef]
- Lang, S.; Chen, C.; Xiang, J.; Liu, Y.; Li, K.; Hu, Q.; Liu, G. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Ind. Eng. Chem. Res. 2021, 60, 10225–10234. [Google Scholar] [CrossRef]
- Sergi, R.; Bellucci, D.; Salvatori, R.; Cannillo, V. Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, In Vitro Bioactivity, and Biological Tests. Materials 2020, 13, 2819. [Google Scholar] [CrossRef] [PubMed]
- Muresan, A.; Cerempei, A.; Dunca, S.; Muresan, R.; Butnaru, R. Aromatherapeutic characteristics of cotton fabrics treated with rosemary essential oil. Cellul. Chem. Technol. 2009, 43, 435–442. Available online: https://www.cellulosechemtechnol.ro/pdf/CCT9-10-2009/p.435-442.pdf (accessed on 3 April 2023).
- Štular, D.; Šobak, M.; Mihelčič, M.; Šest, E.; German Ilić, I.; Jerman, I.; Simončič, B.; Tomšič, B. Proactive Release of Antimicrobial Essential Oil from a “Smart” Cotton Fabric. Coatings 2019, 9, 242. [Google Scholar] [CrossRef]
- Stan, M.S.; Chirila, L.; Popescu, A.; Radulescu, D.M.; Radulescu, D.E.; Dinischiotu, A. Essential Oil Microcapsules Immobilized on Textiles and Certain Induced Effects. Materials 2019, 12, 2029. [Google Scholar] [CrossRef]
- Ghayempour, S.; Montazer, M. Herbal products on cellulosic fabric with controlled release: Comparison of in situ encapsulation and UV curing of the prepared nanocapsules. Cellulose 2017, 24, 4033–4043. [Google Scholar] [CrossRef]
- Gheorghita, D.; Grosu, E.; Robu, A.; Ditu, L.M.; Deleanu, I.M.; Pircalabioru, G.G.; Raiciu, A.-D.; Bita, A.-I.; Antoniac, A.; Antoniac, V.I. Essential Oils as Antimicrobial Active Substances in Wound Dressings. Materials 2022, 15, 6923. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, P.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Feng, J.; Garcia-Celma, M.J.; Azemar, N.; Solans, C. Phase Behavior and Nano-emulsion Formation by the Phase Inversion Temperature Method. Langmuir 2004, 20, 6594–6598. [Google Scholar] [CrossRef] [PubMed]
- Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release 2008, 128, 185–199. [Google Scholar] [CrossRef]
- Sugumar, S.; Singh, S.; Mukherjee, A.; Chandrasekaran, N. Nanoemulsion of orange oil with non-ionic surfactant produced emulsion using ultrasonication technique: Evaluating against food spoilage yeast. Appl. Nanosci. 2016, 6, 113–120. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J.; Chen, Z.; Wang, Z.; Zhuansun, X.; Feng, J.; Chen, Y. Preparation of Peppermint Oil Nanoemulsions: Investigation of Stability, Antibacterial Mechanism and Apoptosis Effects. Colloids Surf. B Biointerfaces 2021, 201, 111626. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Mihajlovic, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Guerola, P.M.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [PubMed]
- Chagas, E.C.; Majolo, C.; Monteiro, P.C.; de Oliveira, M.R.; Gama, P.E.; Bizzo, H.R.; Chaves, F.C.M. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 2020, 32, 209–215. [Google Scholar] [CrossRef]
- Benzaid, C.; Tichati, L.; Djeribi, R.; Rouabhia, M. Evaluation of the Chemical Composition, the Antioxidant and Antimicrobial Activities of Mentha × piperita Essential Oil against Microbial Growth and Biofilm Formation. J. Essent. Oil Bear. Plants 2019, 22, 335–346. [Google Scholar] [CrossRef]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Hasanpour-Dehkordi, A.; Lorigooini, Z.; Deris, F.; Solati, K.; Mahdiyeh, F. Comparing the Effect of Intranasal Lidocaine 4% with Peppermint Essential Oil Drop 1.5% on Migraine Attacks: A Double-Blind Clinical Trial. Int. J. Prev. Med. 2019, 10, 121. [Google Scholar] [CrossRef]
- Ganesan, M.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phytother Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Li, X.; Tu, Z.; Sha, X.; Ye, Y.; Li, Z. Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Sci. Nutr. 2020, 8, 3099–3109. [Google Scholar] [CrossRef]
- Kehili, S.; Boukhatem, M.; Belkadi, A.; Ferhat, M.; Setzer, W. Peppermint (Mentha piperita L.) Essential Oil As a Potent Anti-Inflammatory, Wound Healing and Anti-Nociceptive Drug. Eur. J. Biol. Res. 2020, 10, 132–149. [Google Scholar] [CrossRef]
- Wang, J.; Lan, Y.; Li, H.; Zhang, W.; Zhang, Q.; Cao, Y.; Wu, Q. Percutaneous penetration enhancement effect of essential oil of mint (Mentha haplocalyx Briq.) on Chinese herbal components with different lipophilicity. J. Tradit. Chin. Med Sci. 2014, 1, 109–119. [Google Scholar] [CrossRef]
- Zhu, X.F.; Luo, J.; Guan, Y.M.; Yu, Y.T.; Jin, C.; Zhu, W.F.; Liu, H.N. Effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong and penetration mechanism of skin blood flow. Zhongguo Zhong Yao Za Zhi 2017, 42, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Jaruzel, C.B.; Gregoski, M.; Mueller, M.; Faircloth, A.; Kelechi, T. Aromatherapy for Preoperative Anxiety: A Pilot Study. J. Perianesthesia Nurs. 2019, 34, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.; Terry, R.; Watson, L.K.; Ernst, E. Is lavender an anxiolytic drug? A systematic review of randomised clinical trials. Phytomedicine 2012, 19, 825–835. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, D.; Roy, S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef]
- Tansaoui, H.; Bouazizi, N.; Behary, N.; Campagne, C.; El-Achari, A.; Vieillard, J. Assessing Alternative Pre-Treatment Methods to Promote Essential Oil Fixation into Cotton and Polyethylene Terephthalate Fiber: A Comparative Study. Polymers 2023, 15, 1362. [Google Scholar] [CrossRef]
- Julaeha, E.; Nurzaman, M.; Wahyudi, T.; Nurjanah, S.; Permadi, N.; Al Anshori, J. The Development of the Antibacterial Microcapsules of Citrus Essential Oil for the Cosmetotextile Application: A Review. Molecules 2022, 27, 8090. [Google Scholar] [CrossRef]
- Negi, A.; Kesari, K.K. Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils. Micromachines 2022, 13, 1265. [Google Scholar] [CrossRef]
- Grgac, S.F.; Jablan, J.; Inić, S.; Malinar, R.; Kovaček, I.; Čorak, I. The Effect of Ultrasonic Treatment on the Binding of the Inclusion Complex β-Cyclodextrin-peppermint Oil with Cellulose Material. Materials 2022, 15, 470. [Google Scholar] [CrossRef]
- Campelo, P.H.; Junqueira, L.A.; de Resende, J.V.; Zacarias, R.D.; Fernandes, R.V.D.B.; Botrel, D.A.; Borges, S.V. Stability of Lime Essential Oil Emulsion Prepared Using Biopolymers and Ultrasound Treatment. Int. J. Food Prop. 2017, 20, S564–S579. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Diaconu, M. Elements of Microbiology. Applications; Performantica: Iasi, Romania, 2016; pp. 511–520. (In Romanian) [Google Scholar]
- Gentile, L. Protein-polysaccharide interactions and aggregates in food formulations. Curr. Opin. Colloid Interface Sci. 2020, 48, 18–27. [Google Scholar] [CrossRef]
- Maphosa, Y.; Jideani, V.A. Factors Affecting the Stability of Emulsions Stabilised by Biopolymers. In Science and Technology Behind Nanoemulsions; Karakuş, S., Ed.; IntechOpen: London, UK, 2018; pp. 65–80. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Saranraj, P.; Durga Devi, V. Essential oils and its antibacterial properties—A review. Life Sci. Arch. 2017, 3, 994–1011. [Google Scholar] [CrossRef]
- Moş, I.; Micle, O.; Zdrâncă, M.; Mureşan, M.; Vicaş, L. Antibiotic sensitivity of the Escherichia Coli strains isolated from infected skin wounds. Farmacia 2010, 58, 637–645. Available online: https://farmaciajournal.com/arhiva/20105/issue52010art11-637-645.pdf (accessed on 3 April 2023).
- Alharbi, N.S.; Khaled, J.M.; Kadaikunnan, S.; Alobaidi, A.S.; Sharafaddin, A.H.; Alyahya, S.A.; Almanaa, T.N.; Alsughayier, M.A.; Shehu, M.R. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J. Biol. Sci. 2019, 26, 1557–1562. [Google Scholar] [CrossRef]
- Petkovšek, Z.; Eleršič, K.; Gubina, M.; Žgur-Bertok, D.; Erjavec, M.S. Virulence Potential of Escherichia coli Isolates from Skin and Soft Tissue Infections. J. Clin. Microbiol. 2009, 47, 1811–1817. [Google Scholar] [CrossRef]
- Bachir Raho, G.; Abouni, B. Escherichia coli and Staphylococcus aureus most common source of infection. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2015; pp. 637–648. [Google Scholar]
- Szulc, J.; Machnowski, W.; Kowalska, S.; Jachowicz, A.; Ruman, T.; Steglińska, A.; Gutarowska, B. Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties. Polymers 2020, 12, 344. [Google Scholar] [CrossRef]
- Palmer, S.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef]
Emulsion Code | Beeswax (g) | Gelatin (g) | Chitosan 3% (g) | Glycerin (mL) | Tween 80 (mL) | M.E.O (mL) | Fresh Double Distilled Water (mL) |
---|---|---|---|---|---|---|---|
E1 | 4 | 4 | 12 | 6 | 2 | 4 | 68 |
E2 | 4 | 4 | 12 | 6 | 1 | 4 | 69 |
E3 | 4 | 4 | 12 | 6 | 1.5 | 4 | 68.5 |
E4 | 4 | 4 | - | 6 | 1.5 | 4 | 80.5 |
E5 | 4 | - | 12 | 6 | 1.5 | 4 | 72.5 |
E6 | - | 4 | 12 | 6 | 1.5 | 4 | 72.5 |
Samples | ||||||
---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | |
pH | 5.3 | 5.3 | 5.3 | 5.7 | 5.4 | 5.5 |
Odor Intensity * | |||
---|---|---|---|
Sample | TE1 | TE3 | TE6 |
1 day | 5 | 5 | 5 |
2 days | 4–5 | 4–5 | 4 |
3 days | 4–5 | 4–5 | 3–4 |
4 days | 4 | 4 | 3 |
5 days | 3–4 | 3–4 | 2–3 |
Kinetic Model | Kinetic Parameters | TE1 | TE3 | TE6 |
---|---|---|---|---|
Korsmeyer–Peppas | n | 0.614 | 0.617 | 0.510 |
kK-P | 0.347 | 0.342 | 0.458 | |
R2 | 0.985 | 0.989 | 0.962 |
Bacteria | The Diameters of the Inhibition Zones (mm) for the Samples Treated with Emulsions | |||||
---|---|---|---|---|---|---|
UT (Control) | TE1 | TE3 | TE3A | TE3B | TE6 | |
E. coli | 0 | 38.3 ± 1.608 | 40.6 ± 1.705 | 33.3 ± 0.932 | 51.3 ± 1.744 | 34.6 ± 1.211 |
S. aureus | 0 | 53.6 ± 2.680 | 58.3 ± 2.332 | 44.3 ± 1.683 | 64.0 ± 2.560 | 50.5 ± 1.868 |
Bacteria | The Degree of Inhibition of the Development of Microbial Strains (%) | |||||
---|---|---|---|---|---|---|
UT (Control) | TE1 | TE3A | TE3 | TE3B | TE6 | |
E. coli | 0 | 42.55 | 37.0 | 45.11 | 57.0 | 38.44 |
S. aureus | 0 | 59.55 | 49.22 | 64.77 | 71.11 | 56.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosu, G.; Muresan, E.I.; Spac, A.F.; Diaconu, M.; Ciolacu, D.E.; Danila, A.; Tita, C.; Muresan, A. Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum). Polymers 2023, 15, 2348. https://doi.org/10.3390/polym15102348
Rosu G, Muresan EI, Spac AF, Diaconu M, Ciolacu DE, Danila A, Tita C, Muresan A. Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum). Polymers. 2023; 15(10):2348. https://doi.org/10.3390/polym15102348
Chicago/Turabian StyleRosu, Genoveva, Emil Ioan Muresan, Adrian Florin Spac, Mariana Diaconu, Diana Elena Ciolacu, Angela Danila, Carmen Tita, and Augustin Muresan. 2023. "Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum)" Polymers 15, no. 10: 2348. https://doi.org/10.3390/polym15102348
APA StyleRosu, G., Muresan, E. I., Spac, A. F., Diaconu, M., Ciolacu, D. E., Danila, A., Tita, C., & Muresan, A. (2023). Aromatherapeutic and Antibacterial Properties of Cotton Materials Treated with Emulsions Containing Peppermint Essential Oil (Menthae piperitae aetheroleum). Polymers, 15(10), 2348. https://doi.org/10.3390/polym15102348