A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of DPBSi
2.3. Preparation of DGEBA/DDM/DPBSi Mixtures for DSC Tests
2.4. Synthesis of the Cured Epoxy Resins
2.5. Characterization
3. Results and Discussion
3.1. Characterization
3.2. Curing Behaviors and Thermal Stability
3.3. Thermomechanical and Mechanical Properties
3.4. Flame Retardancy
3.5. Char Analysis
3.6. Gaseous Products’ Analysis
3.7. Flame-Retardant Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raquez, J.M.; Deléglise, M.; Lacrampe, M.F.; Krawczak, P. Thermosetting (bio)materials derived from renewable resources: A critical review. Prog. Polym. Sci. 2010, 35, 487–509. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Datta, J.; Włoch, M. Selected biotrends in development of epoxy resins and their composites. Polym. Bull. 2014, 71, 3035–3049. [Google Scholar] [CrossRef]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in Epoxy Resins. Polym. Rev. 2019, 60, 1–41. [Google Scholar] [CrossRef]
- Rad, E.R.; Vahabi, H.; de Anda, A.R.; Saeb, M.R.; Thomas, S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019, 135, 608–612. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Xu, M.; Li, Z.; Hu, Y.; Li, B. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos. Part B 2019, 167, 422–433. [Google Scholar] [CrossRef]
- Lu, J.; Cai, B.; Xu, W.; Wang, L.; Luo, Z.; Wang, B. A Nitrogen-Rich DOPO-Based Derivate for Increasing Fire Resistance of Epoxy Resin with Comparable Transparency. Materials 2023, 16, 519. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Hong, J.; Luo, W.; Zeng, B.; Yuan, C.; Xu, Y.; Chen, G.; Dai, L. In-situ growth of metal-organophosphorus nanosheet/nanorod on graphene for enhancing flame retardancy and mechanical properties of epoxy resin. Compos. Part B 2020, 200, 108271. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, J.; Li, M.; Cai, Q.; Li, W.; Huang, C.; Yuan, C.; Xu, Y.; Zeng, B.; Dai, L. Design of h-BN@boronate polymer core-shell nanoplates to simultaneously enhance the flame retardancy and mechanical properties of epoxy resin through the interficial regulation. Compos. Part A 2020, 130, 105751. [Google Scholar] [CrossRef]
- Xia, L.; Wang, X.; Guo, C.; Miao, Z.; Dai, J.; Li, D.; Xu, Y.; Luo, W.; Yuan, C.; Zeng, B.; et al. Core-shell structured ZnO nanorods enable flame-retardant, smoke suppressed and mechanically reinforced epoxy resin composites. Compos. Commun. 2022, 35, 101311. [Google Scholar] [CrossRef]
- Ma, C.; Qiu, S.; Yu, B.; Wang, J.; Wang, C.; Zeng, W.; Hu, Y. Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins. Chem. Eng. J. 2017, 322, 618–631. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Batool, S.; Song, L.; Hu, Y. A phosphaphenanthrene-containing vanillin derivative as co-curing agent for flame-retardant and antibacterial epoxy thermoset. Polymer 2021, 217, 123460. [Google Scholar] [CrossRef]
- Madyaratri, E.W.; Ridho, M.R.; Aristri, M.A.; Lubis, M.A.R.; Iswanto, A.H.; Nawawi, D.S.; Antov, P.; Kristak, L.; Majlingova, A.; Fatriasari, W. Recent Advances in the Development of Fire-Resistant Biocomposites’A Review. Polymers 2022, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Zhang, H.J.; Hu, X.P.; Yang, W.X.; Cheng, Z.; Xie, C.Q. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. J. Hazard. Mater. 2020, 398, 123001. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Cha, S.H.; Kim, D.H. Preparation and Characterization of Cardanol-Based Flame Retardant for Enhancing the Flame Retardancy of Epoxy Adhesives. Polymers 2022, 14, 5205. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Duan, H.; Zou, J.; Zhang, J.; Ma, H. A bio-based phosphorus-containing co-curing agent towards excellent flame retardance and mechanical properties of epoxy resin. Polym. Degrad. Stab. 2021, 187, 109548. [Google Scholar] [CrossRef]
- Qi, Y.; Weng, Z.; Kou, Y.; Song, L.; Li, J.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem. Eng. J. 2021, 406, 126881. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting’How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. Engl. 2018, 57, 10450–10467. [Google Scholar] [CrossRef]
- Ye, G.; Huo, S.; Wang, C.; Song, P.; Fang, Z.; Wang, H.; Liu, Z. Durable flame-retardant, strong and tough epoxy resins with well-preserved thermal and optical properties via introducing a bio-based, phosphorus-phosphorus, hyperbranched oligomer. Polym. Degrad. Stab. 2023, 207, 110235. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z. Synthesis of a bio-based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression. Polym. Adv. Technol. 2021, 32, 4282–4295. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Shen, M.; Xu, X.; Liu, H.; Wang, D.; Wang, H.; Shang, S. Biobased Phosphorus Siloxane-Containing Polyurethane Foam with Flame-Retardant and Smoke-Suppressant Performances. ACS Sustain. Chem. Eng. 2021, 9, 8623–8634. [Google Scholar] [CrossRef]
- Liu, C.; Li, P.; Xu, Y.-J.; Liu, Y.; Zhu, P.; Wang, Y.-Z. Bio-based nickel alginate toward improving fire safety and mechanical properties of epoxy resin. Polym. Degrad. Stab. 2022, 200, 109945. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, T.; Li, J.; Tan, J.; Zhang, M.; Zhou, Y.; Zhu, X. Facile Synthesis of Eugenol-Based Phosphorus/Silicon-Containing Flame Retardant and Its Performance on Fire Retardancy of Epoxy Resin. ACS Appl. Polym. Mater. 2022, 4, 1794–1804. [Google Scholar] [CrossRef]
- Wang, J.; Huo, S.; Wang, J.; Yang, S.; Chen, K.; Li, C.; Fang, D.; Fang, Z.; Song, P.; Wang, H. Green and Facile Synthesis of Bio-Based, Flame-Retardant, Latent Imidazole Curing Agent for Single-Component Epoxy Resin. ACS Appl. Polym. Mater. 2022, 4, 3564–3574. [Google Scholar] [CrossRef]
- Varma, I.K.; Gupta, U. Curing of Epoxy Resin with Phosphorylated Diamine. J. Macromol. Sci. Part A-Chem. 1986, 23, 19–36. [Google Scholar] [CrossRef]
- Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011, 47, 1081–1089. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, L.; Zeng, B.; Yi, X.; Huang, C.; Du, K.; Liu, X.; Xu, Y.; Yuan, C.; Dai, L. Diblock Copolymers Containing Titanium-Hybridized Polyhedral Oligomeric Silsesquioxane Used as a Macromolecular Flame Retardant for Epoxy Resin. Polymers 2022, 14, 1708. [Google Scholar] [CrossRef]
- Abdalrhem, H.A.O.; Pan, Y.; Gu, H.; Ao, X.; Ji, X.; Jiang, X.; Sun, B. Synthesis of DOPO-Based Phosphorus-Nitrogen Containing Hyperbranched Flame Retardant and Its Effective Application for Poly(ethylene terephthalate) via Synergistic Effect. Polymers 2023, 15, 662. [Google Scholar] [CrossRef]
- Tang, S.; Qian, L.; Liu, X.; Dong, Y. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym. Degrad. Stab. 2016, 133, 350–357. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Rahman, M.Z.; Song, L.; Hu, Y. Improvement of the flame retardant and thermomechanical properties of epoxy resins by a vanillin-derived cyclotriphosphazene-cored triazole compound. Polym. Degrad. Stab. 2022, 204, 110088. [Google Scholar] [CrossRef]
- Chu, F.; Ma, C.; Zhang, T.; Xu, Z.; Mu, X.; Cai, W.; Zhou, X.; Ma, S.; Zhou, Y.; Hu, W.; et al. Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Compos. Part B 2020, 190, 107925. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Ma, L.; Yuan, J.; Wang, L.; Wang, H.; Xiao, F.; Zhu, Z. Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym. Degrad. Stab. 2022, 204, 110106. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhu, Z.; Yin, X.; Wang, L.; Weng, Y.; Wang, X. A novel DOPO-based flame retardant containing benzimidazolone structure with high charring ability towards low flammability and smoke epoxy resins. Polym. Degrad. Stab. 2021, 183, 109426. [Google Scholar] [CrossRef]
- Devine, S.M.; Challis, M.P.; Kigotho, J.K.; Siddiqui, G.; De Paoli, A.; MacRaild, C.A.; Avery, V.M.; Creek, D.J.; Norton, R.S.; Scammells, P.J. Discovery and development of 2-aminobenzimidazoles as potent antimalarials. Eur. J. Med. Chem. 2021, 221, 113518. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Liu, Z.; Li, C.; Wang, X.; Cai, H.; Wang, J. Synthesis of a phosphaphenanthrene/benzimidazole-based curing agent and its application in flame-retardant epoxy resin. Polym. Degrad. Stab. 2019, 163, 100–109. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, W.; Li, B.; Yang, K.; Lin, L. Synthesis of a phosphorus and sulfur-containing aromatic diamine curing agent and its application in flame retarded epoxy resins. Fire Mater. 2015, 39, 518–532. [Google Scholar] [CrossRef]
- Duan, H.; Chen, Y.; Ji, S.; Hu, R.; Ma, H. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties. Chem. Eng. J. 2019, 375, 121916. [Google Scholar] [CrossRef]
- Qi, Y.; Weng, Z.; Zhang, K.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy. Chem. Eng. J. 2020, 387, 124115. [Google Scholar] [CrossRef]
- Fang, Y.; Miao, J.; Yang, X.; Zhu, Y.; Wang, G. Fabrication of polyphosphazene covalent triazine polymer with excellent flame retardancy and smoke suppression for epoxy resin. Chem. Eng. J. 2020, 385, 123830. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, X.; Bu, M.; Lei, C. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant. Eur. Polym. J. 2022, 178, 111488. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Zhou, J.; Zhang, D.; Zhang, A. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid. Chem. Eng. J. 2018, 334, 1371–1382. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, H.; Wan, C.; Liu, C.; Zhao, H.; Ma, H. Simultaneously improving the thermal stability, mechanical properties and flame retardancy of epoxy resin by a phosphorus/nitrogen/sulfur-containing reactive flame retardant. Mater. Today Commun. 2022, 30, 103108. [Google Scholar] [CrossRef]
- Chen, B.; Luo, W.; Lv, J.; Lin, S.; Zheng, B.; Zhang, H.; Chen, M. A universal strategy toward flame retardant epoxy resin with ultra-tough and transparent properties. Polym. Degrad. Stab. 2022, 205, 110132. [Google Scholar] [CrossRef]
- Rao, W.; Zhao, P.; Yu, C.; Zhao, H.-B.; Wang, Y.-Z. High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Compos. Part B 2021, 211, 108640. [Google Scholar] [CrossRef]
- Qiu, Y.; Qian, L.; Feng, H.; Jin, S.; Hao, J. Toughening Effect and Flame-Retardant Behaviors of Phosphaphenanthrene/Phenylsiloxane Bigroup Macromolecules in Epoxy Thermoset. Macromolecules 2018, 51, 9992–10002. [Google Scholar] [CrossRef]
- Ren, G.-Z.; Chen, C.-J.; Deng, L.-H.; Quan, H.-Y.; Lu, Y.-G.; Wu, Q.-L. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy. New Carbon Mater. 2015, 30, 476–480. [Google Scholar] [CrossRef]
- Lv, Y.; Dai, J.; Xia, L.; Luo, L.; Xu, Y.; Dai, L. Smoke suppression and phosphorus-free condensed phase flame-retardant epoxy resin composites based on Salen-Ni. Polym. Degrad. Stab. 2022, 201, 109980. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, Z.B.; Chen, X.F.; Long, J.W.; Chen, L.; Wang, Y.Z. Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin. ACS Appl. Mater. Interfaces 2015, 7, 17919–17928. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Wang, D.-Y.; Liu, Y.; Ge, X.-G.; Wang, Y.-Z. Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 2008, 108, 2644–2653. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.; Li, S.; Fan, X.; Liu, C. Simultaneously Improving the Thermal, Flame-Retardant and Mechanical Properties of Epoxy Resins Modified by a Novel Multi-Element Synergistic Flame Retardant. Macromol. Mater. Eng. 2019, 304, 1800619. [Google Scholar] [CrossRef]
- Wang, X.; Wu, T.; Hong, J.; Dai, J.; Lu, Z.; Yang, C.; Yuan, C.; Dai, L. Organophosphorus modified hollow bimetallic organic frameworks: Effective adsorption and catalytic charring of pyrolytic volatiles. Chem. Eng. J. 2021, 421, 129697. [Google Scholar] [CrossRef]
Samples | DGEBA (g) | DDM (g) | DPBSi (g) | P Content (wt%) |
---|---|---|---|---|
DPBSi | / | / | / | 5.4 |
EP | 100 | 25 | 0 | 0 |
EP/DPBSi-2 | 100 | 25 | 2.55 | 0.11 |
EP/DPBSi-4 | 100 | 25 | 5.21 | 0.22 |
EP/DPBSi-6 | 100 | 25 | 7.98 | 0.33 |
Samples | T5% (°C) | Tmax (°C) | Rmax (%/°C) | Char Yield at 800 °C (%) |
---|---|---|---|---|
DPBSi | 295.0 | 416.5 | −0.55 | 31.80 |
EP | 354.9 | 384.9 | −1.52 | 13.17 |
EP/DPBSi-2 | 343.8 | 378.8 | −1.20 | 19.71 |
EP/DPBSi-4 | 332.0 | 374.1 | −0.94 | 24.80 |
EP/DPBSi-6 | 326.1 | 364.1 | −0.88 | 28.17 |
Samples | Tg (°C) | E′ at 40 °C (MPa) | E′ at Tg + 30 °C (MPa) | Ve × 10−3 (mol/cm3) | Flexural Strength (MPa) | Flexural Modulus (MPa) | Impact Strength (kJ/m2) |
---|---|---|---|---|---|---|---|
EP | 146.3 | 1350.4 | 14.0 | 1.25 | 88.1 ± 2 | 2593.2 ± 48 | 2.77 ± 0.40 |
EP/DPBSi-2 | 158.4 | 1708.6 | 20.5 | 1.74 | 105.2 ± 2 | 3042.9 ± 52 | 6.88 ± 0.64 |
EP/DPBSi-4 | 151.4 | 2054.5 | 28.1 | 2.48 | 127.9 ± 3 | 3169.9 ± 55 | 8.01 ± 0.57 |
EP/DPBSi-6 | 149.5 | 2175.1 | 26.5 | 2.35 | 142.2 ± 4 | 3205.4 ± 62 | 9.42 ± 0.65 |
Samples | LOI (%) | UL-94 | |||
---|---|---|---|---|---|
t1 | t2 | Dripping | Rating | ||
EP | 23.6 | >30 s | / | Yes | NR |
EP/DPBSi-2 | 28.9 | 14 s | 4 s | no | V1 |
EP/DPBSi-4 | 31.5 | 5 s | 4 s | no | V0 |
EP/DPBSi-6 | 33.5 | 2 s | 1 s | no | V0 |
Samples | TTI (s) | pHRR (kW/m2) | THR (MJ/m2) | TSP (m2) | av-EHC (MJ/kg) | av-COY (kg/kg) | FIGRA (kW/m2·s) |
---|---|---|---|---|---|---|---|
EP | 49 ± 2 | 1002 ± 35 | 89.5 ± 5 | 22.2 ± 0.51 | 34.3 ± 0.48 | 0.28 ± 0.03 | 11.2 |
EP/DPBSi-2 | 59 ± 3 | 883 ± 27 | 68.0 ± 3 | 17.3 ± 0.42 | 24.3 ± 0.30 | 0.14 ± 0.01 | 9.7 |
EP/DPBSi-4 | 46 ± 2 | 731 ± 23 | 52.5 ± 2 | 14.9 ± 0.39 | 24.2 ± 0.29 | 0.15 ± 0.02 | 8.4 |
EP/DPBSi-6 | 49 ± 3 | 676 ± 19 | 50.7 ± 2 | 13.9 ± 0.37 | 26.3 ± 0.35 | 0.21 ± 0.02 | 8.3 |
Sample | PHRR | TSP | P (wt%) | LOI (%) | Mechanical Properties | Ref. |
---|---|---|---|---|---|---|
8% DDSi-1/EP | ↓ 47.7% | ↓ 7% | 0.60 | 35.9 | ↑ 140% Impact strength | [46] |
EP/PVSi5 | ↓ 37.2% | None | 0.27 | 29.5 | ↑ 190% Impact strength | [32] |
EP/VFD-10 | ↓ 31.0% | ↓ 10% | 0.69 | 35.5 | ↑ 29% Flexure strength ↑ 10% Storage modulus | [17] |
2 EGN-Si/P | ↓ 49.6% | ↓ 17% | 1.48 | 29.7 | ↑ 46% Impact strength ↑ 12% Storage modulus | [24] |
6%DP-PPD/EP | ↓ 20.4% | ↓ 10% | 0.18 | 31.1 | ↑ 120% Impact strength ↑ 12% Flexure strength | [45] |
E51-DM-P0.5% | ↓ 30.4% | ↓ 3.6% | 0.50 | 33.5 | ↑ 24% Impact strength ↑ 32% Storage modulus | [41] |
TOD/EP-6 | ↓ 10.7% | ↓ 18% | 0.40 | 32.3 | ↑ 271% Impact strength ↑ 38% Flexure strength | [35] |
EP/DPBSi-6 | ↓ 32.5% | ↓ 37% | 0.33 | 33.5 | ↑ 240% Impact strength ↑ 61% Flexure strength ↑ 61% Storage modulus | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Chi, C.; Peng, C.; Zeng, B.; Chen, Y.; Miao, Z.; Xu, H.; Luo, W.; Chen, G.; Fu, Z.; et al. A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset. Polymers 2023, 15, 2384. https://doi.org/10.3390/polym15102384
He S, Chi C, Peng C, Zeng B, Chen Y, Miao Z, Xu H, Luo W, Chen G, Fu Z, et al. A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset. Polymers. 2023; 15(10):2384. https://doi.org/10.3390/polym15102384
Chicago/Turabian StyleHe, Siyuan, Cheng Chi, Chaohua Peng, Birong Zeng, Yongming Chen, Zhongxi Miao, Hui Xu, Weiang Luo, Guorong Chen, Zhenping Fu, and et al. 2023. "A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset" Polymers 15, no. 10: 2384. https://doi.org/10.3390/polym15102384
APA StyleHe, S., Chi, C., Peng, C., Zeng, B., Chen, Y., Miao, Z., Xu, H., Luo, W., Chen, G., Fu, Z., & Dai, L. (2023). A Novel P/N/Si-Containing Vanillin-Based Compound for a Flame-Retardant, Tough Yet Strong Epoxy Thermoset. Polymers, 15(10), 2384. https://doi.org/10.3390/polym15102384