Flame Retardancy Index (FRI) for Polymer Materials Ranking
Abstract
:1. Background
2. Conceptualization
3. Visualization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M.R.; Dubois, P. Flame retardant polymer materials: An update and the future for 3D printing developments. Mater. Sci. Eng. R Rep. 2021, 144, 100604. [Google Scholar] [CrossRef]
- Bourbigot, S. Evaluation of Condensed Phase: Char/Residue Analysis. In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 191–231. [Google Scholar]
- Quan, Y.; Zhang, Z.; Tanchak, R.N.; Wang, Q. A review on cone calorimeter for assessment of flame-retarded polymer composites. J. Therm. Anal. Calorim. 2022, 147, 10209–10234. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-resistant aluminosilicate composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame retardancy index for thermoplastic composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef]
- Seidi, F.; Movahedifar, E.; Naderi, G.; Akbari, V.; Ducos, F.; Shamsi, R.; Vahabi, H.; Saeb, M.R. Flame retardant polypropylenes: A review. Polymers 2020, 12, 1701. [Google Scholar] [CrossRef]
- Movahedifar, E.; Vahabi, H.; Saeb, M.R.; Thomas, S. Flame retardant epoxy composites on the road of innovation: An analysis with flame retardancy index for future development. Molecules 2019, 24, 3964. [Google Scholar] [CrossRef]
- Ramadan, N.; Taha, M.; La Rosa, A.D.; Elsabbagh, A. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants. Materials 2021, 14, 1181. [Google Scholar] [CrossRef]
- Lou, G.; Ma, Z.; Dai, J.; Bai, Z.; Fu, S.; Huo, S.; Li, F.; Liu, Y.-Q. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustain. Chem. Eng. 2021, 9, 13595–13605. [Google Scholar] [CrossRef]
- Rao, W.; Zhao, P.; Yu, C.; Zhao, H.-B.; Wang, Y.-Z. High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Compos. Part B Eng. 2021, 211, 108640. [Google Scholar] [CrossRef]
- Seraji, S.M.; Song, P.; Varley, R.J.; Bourbigot, S.; Voice, D.; Wang, H. Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chem. Eng. J. 2022, 430, 132785. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiao, Z.; Shen, R.; Song, P.; Wang, Q. Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction. ACS Appl. Eng. Mater. 2022, 1, 596–605. [Google Scholar] [CrossRef]
- Vahabi, H.; Naser, M.; Saeb, M. Fire protection and materials flammability control by artificial intelligence. Fire Technol. 2022, 58, 1071–1073. [Google Scholar] [CrossRef]
- Bifulco, A.; Parida, D.; Salmeia, K.A.; Lehner, S.; Stämpfli, R.; Markus, H.; Malucelli, G.; Branda, F.; Gaan, S. Improving flame retardancy of in-situ silica-epoxy nanocomposites cured with aliphatic hardener: Combined effect of DOPO-based flame-retardant and melamine. Compos. Part C Open Access 2020, 2, 100022. [Google Scholar] [CrossRef]
- Zhao, B.; Liang, W.-J.; Wang, J.-S.; Li, F.; Liu, Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016, 133, 162–173. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Xing, W.; Yu, B.; Feng, X.; Song, L.; Hu, Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 2013, 1, 4383–4390. [Google Scholar] [CrossRef]
- Prieur, B.; Meub, M.; Wittemann, M.; Klein, R.; Bellayer, S.; Fontaine, G.; Bourbigot, S. Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym. Degrad. Stab. 2016, 127, 32–43. [Google Scholar] [CrossRef]
- Alongi, J.; Cuttica, F.; Bourbigot, S.; Malucelli, G. Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. J. Therm. Anal. Calorim. 2015, 122, 705–715. [Google Scholar] [CrossRef]
- El Hage, R.; Viretto, A.; Sonnier, R.; Ferry, L.; Lopez-Cuesta, J.-M. Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers. Polym. Degrad. Stab. 2014, 108, 56–67. [Google Scholar] [CrossRef]
- Sahyoun, J.; Bounor-Legare, V.; Ferry, L.; Sonnier, R.; Da Cruz-Boisson, F.; Melis, F.; Sonnier, R. Synthesis of a new organophosphorous alkoxysilane precursor and its effect on the thermal and fire behavior of a PA66/PA6 copolymer. Eur. Polym. J. 2015, 66, 352–366. [Google Scholar] [CrossRef]
- Rabe, S.; Schartel, B. The rapid mass calorimeter: A route to high throughput fire testing. Fire Mater. 2017, 41, 834–847. [Google Scholar] [CrossRef]
- Dorez, G.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. [Google Scholar] [CrossRef]
- Patel, P.; Hull, T.R.; Lyon, R.E.; Stoliarov, S.I.; Walters, R.N.; Crowley, S.; Safronava, N. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym. Degrad. Stab. 2011, 96, 12–22. [Google Scholar] [CrossRef]
- Lu, H.; Wilkie, C.A. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym. Adv. Technol. 2011, 22, 14–21. [Google Scholar] [CrossRef]
- Lu, H.; Wilkie, C.A. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym. Degrad. Stab. 2010, 95, 2388–2395. [Google Scholar] [CrossRef]
- Sonnier, R.; Vahabi, H.; Ferry, L.; Lopez-Cuesta, J.-M. Pyrolysis-combustion flow calorimetry: A powerful tool to evaluate the flame retardancy of polymers. Fire Polym. VI New Adv. Flame Retard. Chem. Sci. 2012, 1118, 361–390. [Google Scholar]
- Shi, X.-H.; Li, X.-L.; Li, Y.-M.; Li, Z.; Wang, D.-Y. Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Compos. Part B Eng. 2022, 233, 109663. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, Z.-B.; Yu, L.-X.; Long, J.-W.; Qi, M.; Chen, L.; Wang, Y.-Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: Flame retardance, curing behavior and mechanical property. Polym. Chem. 2016, 7, 3003–3012. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, B.; Shi, Y.; Song, L.; Hu, Y. Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: Application to flame retardant epoxy resin. Ind. Eng. Chem. Res. 2013, 52, 5640–5647. [Google Scholar] [CrossRef]
- Unlu, S.M.; Dogan, S.D.; Dogan, M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym. Adv. Technol. 2014, 25, 769–776. [Google Scholar] [CrossRef]
- Rajaei, M.; Wang, D.-Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B Eng. 2017, 113, 381–390. [Google Scholar] [CrossRef]
- Du, B.; Ma, H.; Fang, Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 2011, 22, 1139–1146. [Google Scholar] [CrossRef]
- Sonnier, R. Microscale forced combustion: Pyrolysis-combustion flow calorimetry (PCFC). In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–116. [Google Scholar]
- Babrauskas, V. Forced combustion: Cone calorimetry. In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 73–90. [Google Scholar]
Polymer and Incorporated FR | FR (wt.%) | Heat Flux (kW·m−2) | ti (s) | tp (s) | pHRR (kW·m−²) | THR (MJ·m−²) | FRI (ti) | FRI (tp) | FRI (ti&tp) | Tp (°C) | pHRR (W·g−1) | THR (kJ·g−1) | FI | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epoxy (EP) | 0 | 35 | 38 | 77 | 2550 | 96 | — | — | — | 385 | 545 | 30 | — | [14] |
EP/6H-dibenz[c,e][1,2]oxaphosphorin,6-[(1-oxido-2,6,7-trioxa-1-phosphabicyclo[2.2.2]oct-4-yl)methoxy]-, 6-oxide (DP) | 20.3 | 35 | 31 | 80 | 744 | 61 | 4.40 | 5.60 | 4.57 | 331 | 371 | 24 | 1.57 | [14] |
EP/DP/Melamine (Mel) | 27.05 | 35 | 50 | 94 | 730 | 62 | 7.11 | 6.60 | 8.68 | 336 | 297 | 26 | 1.84 | [14] |
Silanized epoxy with 2 wt.% silica (Si-EP) | 0 | 35 | 40 | 77 | 1964 | 79 | — | — | — | 388 | 448 | 28 | — | [14] |
Si-EP/DP | 20.3 | 35 | 28 | 122 | 516 | 68 | 3.09 | 7.00 | 4.90 | 347 | 372 | 24 | 1.25 | [14] |
Si-EP/DP/Mel | 27.05 | 35 | 42 | 102 | 909 | 57 | 3.14 | 3.96 | 4.16 | 340 | 270 | 26 | 1.56 | [14] |
EP | 0 | 35 | 82 | 135 | 1148 | 88.4 | — | — | — | 395.9 | 709.6 | 32.8 | — | [15] |
EP/Bisphenol A bridged penta(anilino) cyclotriphosphazene (BPA-BPP) | 9 | 35 | 72 | 150 | 457 | 78.4 | 2.48 | 3.14 | 2.76 | 352.8 | 433.8 | 26 | 1.83 | [15] |
EP | 0 | 35 | 68 | 130 | 1730 | 113.1 | — | — | — | 401 | 449 | 24.4 | — | [16] |
EP/Graphene (GN) | 2 | 35 | 86 | 155.5 | 980 | 65.1 | 3.87 | 3.66 | 4.64 | 398 | 285 | 20.3 | 1.87 | [16] |
EP/Ni–Fe layered double hydroxide (Ni–Fe LDH) | 2 | 35 | 80 | 120.2 | 1070 | 58.9 | 3.65 | 2.87 | 3.37 | 427 | 240 | 17.9 | 2.71 | [16] |
EP/NiFe-LDH&GN | 2 | 35 | 89 | 141.2 | 678 | 44.2 | 8.54 | 7.09 | 9.28 | 440 | 189 | 16.4 | 3.87 | [16] |
Acrylonitrile-butadiene-styrene (ABS) | 0 | 35 | 80 | 157 | 482 | 72 | — | — | — | 340 | 602.6 | 37.7 | — | [17] |
ABS/Kraft lignin (LIG) | 30 | 35 | 49 | 153 | 275 | 63 | 1.22 | 1.95 | 1.19 | 320 | 411.7 | 29.2 | 1.77 | [17] |
ABS/Phosphorylation of lignin (P-LIG) | 30 | 35 | 49 | 167 | 202 | 58 | 1.81 | 3.15 | 1.93 | 340 | 411 | 27.2 | 2.03 | [17] |
Ethylene vinyl acetate copolymer (EVA) | 0 | 35 | 65 | 175 | 1588 | 108 | — | — | — | 473 | 919 | 37.8 | — | [18] |
EVA/Ammoniumpolyphosphate (APP) | 10 | 35 | 28 | 144 | 1030 | 93 | 0.77 | 1.47 | 0.63 | 466 | 758 | 31.6 | 1.42 | [18] |
EVA | 0 | 50 | 39 | 180 | 1366 | 135 | — | — | — | 490 | 800 | 34.8 | — | [19] |
EVA/Aluminum trihydroxyde (ATH) | 25 | 50 | 37 | 145 | 710 | 121 | 2.03 | 1.72 | 1.64 | 490 | 572 | 27 | 1.80 | [19] |
EVA/Precipitated boehmite (Boehm) | 25 | 50 | 54 | 180 | 612 | 122 | 3.41 | 2.46 | 3.42 | 489 | 538 | 25.5 | 2.02 | [19] |
Polyamide 66/Polyamide 6 (90:10 wt.%) copolymer (Cop-PA66&PA6) | 0 | 50 | 77 | 250 | 886 | 140.1 | — | — | — | 458 | 618 | 26.9 | — | [20] |
Cop-PA66&PA6/Organophosphorous alkoxysilane (SiDOPO) | 10 | 50 | 62 | 186 | 597 | 104.8 | 1.59 | 1.47 | 1.18 | 443 | 468 | 25.2 | 1.36 | [20] |
PA66 | 0 | 50 | 51 | 149 | 1509 | 100 | — | — | — | 465 | 633 | 30 | — | [21] |
PA66/Glass fiber (GF) | 35 | 50 | 43 | 92 | 582 | 80 | 2.73 | 2.00 | 1.68 | 455 | 354 | 18 | 2.91 | [21] |
PA66/GF/Red phosphorus (RP) | 35 | 50 | 43 | 57 | 299 | 66 | 6.44 | 2.92 | 2.46 | 390 | 201 | 18 | 4.40 | [21] |
Polyamide 12 (PA12) | 0 | 50 | 63 | 185 | 2205 | 164 | — | — | — | 475 | 937 | 35 | — | [21] |
PA12/GF | 30 | 50 | 36 | 155 | 1992 | 153 | 0.67 | 0.99 | 0.56 | 477 | 762 | 31 | 1.39 | [21] |
Polybutylene succinate (PBS) | 0 | 35 | 150 | 284 | 485 | 873 | — | — | — | 410 | 394 | 18.4 | — | [22] |
PBS/Cellulose | 30 | 35 | 96 | 298 | 385 | 984 | 0.71 | 1.17 | 0.75 | 420 | 275 | 14.9 | 1.81 | [22] |
PBS/Bamboo | 30 | 35 | 43 | 107 | 339 | 884 | 0.40 | 0.53 | 0.15 | 413 | 293 | 15.1 | 1.65 | [22] |
Poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK) | 0 | 50 | 110 | 182 | 415.2 | 36.2 | — | — | — | 619 | 303 | 10.7 | — | [23] |
PEEK/Carbon fibre (CF) | 30 | 50 | 156 | 279 | 146.7 | 26.9 | 5.40 | 5.83 | 8.28 | 621 | 195 | 7 | 2.38 | [23] |
PEEK/GF | 30 | 50 | 115 | 278 | 120.5 | 23.3 | 5.59 | 8.17 | 8.54 | 623 | 233 | 7.2 | 1.94 | [23] |
Polypropylene (PP) | 0 | 35 | 47 | 168 | 1573 | 140 | — | — | — | 486 | 1228 | 41 | — | [24] |
PP/Decabromodiphenyl oxide&Sb2O3 with 5:1 (BrFR&Sb2O3) | 20 | 35 | 57 | 135 | 1445 | 84 | 2.20 | 1.45 | 1.76 | 470 | 374 | 33 | 3.94 | [24] |
PP/BrFR&Sb2O3 | 25 | 35 | 52 | 131 | 1177 | 61 | 3.39 | 2.39 | 2.64 | 459 | 318 | 30 | 4.98 | [24] |
Polystyrene (PS) | 0 | 35 | 44 | 180 | 1166 | 101 | — | — | — | 441 | 1046 | 38 | — | [24] |
PS/BrFR&Sb2O3 | 12 | 35 | 55 | 128 | 591 | 46 | 5.41 | 3.08 | 3.85 | 410 | 598 | 33 | 1.87 | [24] |
PS/BrFR&Sb2O3/Cloisite15A (C15A) | 12 | 35 | 35 | 115 | 442 | 43 | 4.92 | 3.95 | 3.14 | 432 | 408 | 33 | 2.89 | [24] |
PS/BrFR&Sb2O3/Multiwall carbon nanotubes (MWCNT) | 12 | 35 | 34 | 141 | 340 | 43 | 6.22 | 6.30 | 4.87 | 429 | 341 | 31 | 3.65 | [24] |
Polystyrene (PS) | 0 | 35 | 44 | 180 | 1166 | 101 | — | — | — | 441 | 1046 | 38 | — | [25] |
PS/Ammonium polyphosphate (APP)/Tripentaerythritol (TPER) | 20 | 35 | 34 | 67 | 601 | 73 | 2.07 | 0.99 | 0.77 | 452 | 554 | 30 | 2.45 | [25] |
PS/APP/TPER/C15A | 20 | 35 | 34 | 201 | 333 | 72 | 3.79 | 5.48 | 4.23 | 455 | 528 | 31 | 2.50 | [25] |
PS/APP/TPER/C15A | 20 | 35 | 34 | 225 | 320 | 77 | 3.69 | 5.97 | 4.61 | 441 | 526 | 31 | 2.43 | [25] |
PS/APP/TPER/MWCNT | 20 | 35 | 26 | 50 | 519 | 71 | 1.88 | 0.88 | 0.52 | 451 | 581 | 30 | 2.33 | [25] |
PS/APP/TPER/MWCNT | 20 | 35 | 32 | 41 | 457 | 69 | 2.71 | 0.85 | 0.61 | 448 | 605 | 30 | 2.22 | [25] |
PS/APP/TPER/Nanoparticle Fe2O3 (Fe2O3) | 20 | 35 | 28 | 78 | 456 | 74 | 2.22 | 1.51 | 0.96 | 451 | 581 | 31 | 2.25 | [25] |
PS/APP/TPER/Fe2O3 | 20 | 35 | 32 | 37 | 467 | 75 | 2.44 | 0.69 | 0.50 | 449 | 536 | 31 | 2.43 | [25] |
Styrene Ethylene Butylene Styrene&PP (TPES) | 0 | 50 | 23 | 196 | 2346 | 215 | — | — | — | 447 | 565 | 43 | — | [21] |
TPES/AlPi | 30 | 50 | 23 | 245 | 1048 | 160 | 3.00 | 3.76 | 3.76 | 440 | 462 | 37 | 1.39 | [21] |
Polymer and Incorporated FR | FR (wt.%) | Heat Flux (kW·m−2) | ti (s) | tp (s) | pHRR (kW·m−²) | THR (MJ·m−²) | FRI (ti) | FRI (tp) | FRI (ti&tp) | Tp (°C) | pHRR (W·g−1) | THR (kJ·g−1) | FI | Refs. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epoxy (EP) | 0 | 35 | 52 | 90 | 1334.3 | 58.8 | ― | ― | ― | ― | ― | ― | ― | [28] | |
EP/Piperazine-modified ammonium polyphosphate (PAz-APP) | 15 | 35 | 33 | 55 | 246.1 | 11.3 | 17.90 | 17.24 | 10.94 | ― | ― | ― | ― | [28] | |
EP | 0 | 35 | 57 | 130 | 1730.27 | 114.16 | ― | ― | ― | ― | ― | ― | ― | [29] | |
EP/Ammonium polyphosphate (APP) | 15 | 35 | 63 | 95 | 397.89 | 35.49 | 15.46 | 10.22 | 11.29 | ― | ― | ― | ― | [29] | |
EP/Glycidyl methacrylate microencapsulated ammonium polyphosphate (GMA-APP) | 15 | 35 | 68 | 160 | 283.09 | 44 | 18.91 | 19.51 | 23.28 | ― | ― | ― | ― | [29] | |
Epoxy (EP) | 0 | 35 | 57 | 120 | 459 | 55.2 | ― | ― | ― | ― | ― | ― | ― | [30] | |
EP/Boric oxide (BO) | 40 | 35 | 68 | 243 | 82 | 20.6 | 17.89 | 30.37 | 36.23 | ― | ― | ― | ― | [30] | |
EP | 0 | 50 | 23 | 67 | 1910 | 61 | ― | ― | ― | ― | ― | ― | ― | [31] | |
EP/Melamine coated ammonium polyphosphate/Talc (Mel-APP/Talc) | 29.7 | 50 | 28 | 60 | 357 | 24 | 16.55 | 12.17 | 14/82 | ― | ― | ― | ― | [31] | |
Polypropylene (PP) | 0 | 35 | 37 | 189 | 363 | 56 | ― | ― | ― | ― | ― | ― | ― | [32] | |
PP/Nitrogen –phosphorus contained intumescent flame retardant/Octadecyl trimethyl ammonium bromide modified montmorillonite (IFR/OTAB-MMT) | 28 | 35 | 31 | 360 | 45 | 18 | 21.02 | 47.80 | 40.05 | ― | ― | ― | ― | [32] | |
PP | 0 | 35 | 37 | 189 | 363 | 56 | ― | ― | ― | ― | ― | ― | ― | [32] | |
PP/Nitrogen–phosphorus contained intumescent flame retardant/Aminopropylisobutyl polyhedral oligosilsesquioxane (IFR/A-POSS) | 28 | 35 | 32 | 375 | 55 | 16 | 19.97 | 45.83 | 39.63 | ― | ― | ― | ― | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahabi, H.; Movahedifar, E.; Kandola, B.K.; Saeb, M.R. Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers 2023, 15, 2422. https://doi.org/10.3390/polym15112422
Vahabi H, Movahedifar E, Kandola BK, Saeb MR. Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers. 2023; 15(11):2422. https://doi.org/10.3390/polym15112422
Chicago/Turabian StyleVahabi, Henri, Elnaz Movahedifar, Baljinder K. Kandola, and Mohammad Reza Saeb. 2023. "Flame Retardancy Index (FRI) for Polymer Materials Ranking" Polymers 15, no. 11: 2422. https://doi.org/10.3390/polym15112422
APA StyleVahabi, H., Movahedifar, E., Kandola, B. K., & Saeb, M. R. (2023). Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers, 15(11), 2422. https://doi.org/10.3390/polym15112422