Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of LVO Anode Material
2.2. Preparation of the PEDOT:PSS Modified LVO (P-LVO)
2.3. Material Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Sun, Z.; Han, X. Bidirectional activation technology towards foam-like carbon nanosheets and its coupling with oxygen-deficient α-MnO2 for ammonium-ion hybrid supercapacitors. J. Taiwan Inst. Chem. Eng. 2023, 3, 104845. [Google Scholar] [CrossRef]
- Jo, S.; Kitchamsetti, N.; Cho, H.; Kim, D. Microwave-Assisted Hierarchically Grown Flake-like NiCo Layered Double Hydroxide Nanosheets on Transitioned Polystyrene towards Triboelectricity-Driven Self-Charging Hybrid Supercapacitors. Polymers 2023, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Chikaoka, Y.; Iwama, E.; Seto, S.; Okuno, Y.; Shirane, T.; Ueda, T.; Naoi, W.; Reid, M.T.H.; Naoi, K. Dual-cation electrolytes for low H2 gas generation in Li4Ti5O12//AC hybrid capacitor system. Electrochim. Acta 2021, 368, 137619. [Google Scholar] [CrossRef]
- Mwizerwa, J.P.; Xu, K.; Liu, C.; Zhao, N.; Li, Y.; Ndagijimana, P.; Chen, Z.; Shen, J. Three-dimensional printed Li4Ti5O12@VSe2 composites as high-performance anode material in full 3D-printed lithium-ion batteries with three-dimensional-printed LiFePO4@AC/rGO cathode. Mater. Today Chem. 2023, 29, 101483. [Google Scholar] [CrossRef]
- Jiao, X.; Hao, Q.; Xia, X.; Yao, D.; Ouyang, Y.; Lei, W. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors. J. Power Sources 2018, 403, 66–75. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, J.; Ma, J.; Yang, X.; Zhang, L.; Li, X.; Zeng, H. Approaching the theoretical capacity of Li3VO4 via electrochemical reconstruction. Adv. Mater. Interfaces 2016, 3, 1500340. [Google Scholar] [CrossRef]
- Ezhyeh, Z.N.; Khodaei, M.; Torabi, F. Review on doping strategy in Li4Ti5O12 as an anode material for Lithium-ion batteries. Ceram. Int. 2023, 49, 7105–7141. [Google Scholar] [CrossRef]
- Yao, M.; Liu, A.; Xing, C.; Li, B.; Pan, S.; Zhang, J.; Su, P.; Zhang, H. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte. Chem. Eng. J. 2020, 394, 124883. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Ding, G.; Xie, L.; Miao, Y.; Cao, X. Review on the recent development of Li3VO4 as anode materials forlithium-ion batteries. J. Mater. Sci. Technol. 2021, 89, 68–87. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, B.; Song, J.; Chen, B.; Bai, J.; Fang, Z.; Dai, J.; Zhu, X.; Sun, Y. Three-dimensional porous hierarchically architecture Li3VO4 anode materials for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 354–362. [Google Scholar] [CrossRef]
- Shen, L.; Chen, S.; Maier, J.; Yu, Y. Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater. 2017, 29, 1701571. [Google Scholar] [CrossRef]
- Wang, X.; Qin, B.; Sui, D.; Sun, Z.; Zhou, Y.; Zhang, H.; Chen, Y. Facile synthesis of carbon-coated Li3VO4 anode material and its application in full cells. Energy Technol. 2018, 6, 2074–2081. [Google Scholar] [CrossRef]
- Mu, C.; Lei, K.; Li, H.; Li, F.; Chen, J. Enhanced conductivity and structure stability of Ti4+ doped Li3VO4 as anodes for lithium-ion batteries. J. Phys. Chem. C 2017, 121, 26196–26201. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Zhang, D.; Chen, D.; Wang, X.; Li, B.; Li, L. Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: Optimizing rate capability and cycling stability. Electrochim. Acta 2019, 308, 185–194. [Google Scholar] [CrossRef]
- Lu, P.J.; Liu, J.; Liang, S.; Wang, W.; Leid, M.; Tang, S.; Yang, Q. Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 2015, 12, 709–724. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Sheng, J.; Yan, M.; Zhou, L.; Luo, W.; Sun, R.; Mai, L. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2015, 2, 1500284. [Google Scholar] [CrossRef]
- Ren, X.; Ai, D.; Zhan, C.; Lv, R.; Kang, F.; Huang, Z.H. 3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochim. Acta 2020, 355, 136819. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, J.; Yu, Z.; Luo, L. Conductive PEDOT-decorated Li4Ti5O12 as next-generation anode material for electrochemical lithium storage. Solid State Ion. 2018, 325, 7–11. [Google Scholar] [CrossRef]
- Wang, X.; Shen, L.; Li, H.; Wang, J.; Dou, H.; Zhang, X. PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochim. Acta 2014, 129, 283–289. [Google Scholar] [CrossRef]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, B.; Feng, J.; Lu, Y.; Wang, Z.; Aravindan, V.; Aravind, M.; Liu, J.; Srinivasan, M.; Shen, Z.; et al. Morphology controlled lithium storage in Li3VO4 anodes. J. Mater. Chem. A 2018, 6, 456–463. [Google Scholar] [CrossRef]
- Zhao, Q.; Jamal, R.; Zhang, L.; Wang, M.; Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Susanti, E.; Wulandari, P.; Herman. Effect of localized surface plasmon resonance from incorporated gold nanoparticles in PEDOT:PSS hole transport layer for hybrid solar cell applications. J. Phys. Conf. Ser. 2018, 1080, 012010. [Google Scholar] [CrossRef]
- Hassan, G.; Sajid, M.; Choi, C. Highly sensitive and full range detectable humidity sensor using PEDOT:PSS, methyl red and graphene oxide materials. Sci. Rep. 2019, 9, 15227. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Liu, Z.; Peng, H.; Wang, G. Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium ion capacitors. Ionics 2020, 26, 4129–4140. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, L.; Lu, X. Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives. Polym. Bull. 2013, 70, 237–247. [Google Scholar] [CrossRef]
- Xu, X.; Niu, F.; Zhang, D.; Chu, C.; Wang, C.; Yang, J.; Qian, Y. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors. J. Power Sources 2018, 384, 240–248. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Sun, P.; Yang, D.; Ni, S. Low temperature and atmospheric pressure fabrication of Li3VO4/rGO hybrid as high-performance anode for lithium-ion batteries. Ionics 2021, 27, 1041–1048. [Google Scholar] [CrossRef]
- Yemata, T.A.; Zheng, Y.; Kyaw, A.K.K.; Wang, X.; Song, J.; Chin, W.S.; Xu, J. Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient. RSC Adv. 2020, 10, 1786–1792. [Google Scholar] [CrossRef]
- Ramesh, G.; Palaniappan, S.; Basavaiah, K. One-step synthesis of PEDOT-PSS TiO2 by peroxotitanium acid: A highly stable electrode for a supercapacitor. Ionics 2018, 24, 1475–1485. [Google Scholar] [CrossRef]
- Alhummiany, H.; Rafique, S.; Sulaiman, K. XPS Analysis of improved operational stability of organic solar cells using V2O5 and PEDOT:PSS composite layer: Effect of varied atmospheric conditions. J. Phys. Chem. C 2017, 121, 7649–7658. [Google Scholar] [CrossRef]
- Zhang, C.; Song, H.; Liu, C.; Liu, Y.; Zhang, C.; Nan, X.; Cao, G. Fast and rReversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater. 2015, 25, 3497–3504. [Google Scholar] [CrossRef]
- Zha, G.; Hu, N.; Luo, Y.; Wang, F.; Wu, R.; Li, Y.; Fu, H.; Fu, X. Reducing Ni/Li disorder and boosting electrochemical performance of LiNi0.8Co0.067Fe0.033Mn0.1O2 cathode material. J. Taiwan Inst. Chem. Eng. 2023, 144, 104730. [Google Scholar] [CrossRef]
- Ye, L.; Liang, Q.; Lei, Y.; Yu, X.; Han, C.; Shen, W.; Huang, Z.H.; Kang, F.; Yang, Q.H. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J. Power Sources 2015, 282, 174–178. [Google Scholar] [CrossRef]
- Xing, L.L.; Huang, K.J.; Cao, S.X.; Pang, H. Chestnut shell-like Li4Ti5O12 hollow spheres for high-performance aqueous asymmetric supercapacitors. Chem. Eng. J. 2018, 332, 253–259. [Google Scholar] [CrossRef]
- Lee, G.W.; Kim, M.S.; Jeong, J.H.; Roh, H.K.; Roh, K.C.; Kim, K.B. Comparative study of Li4Ti5O12 composites prepared with pristine, oxidized, and surfactant treated multi-walled carbon nanotubes for high-power hybrid supercapacitors. ChemElectroChem 2018, 5, 2357–2366. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, S.H.; Yoon, J.R.; Ahn, H.J. Formation of holes into granule Li4Ti5O12 anode for enhanced performance of hybrid supercapacitors. Electochim. Acta 2018, 263, 555–560. [Google Scholar] [CrossRef]
- Leng, K.; Zhang, F.; Zhang, L.; Zhang, T.; Wu, Y.; Lu, Y.; Huang, Y.; Chen, Y. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581–592. [Google Scholar] [CrossRef]
- Deng, B.; Dong, H.; Lei, T.; Yue, N.; Xiao, L.; Liu, J. Post-annealing tailored 3D cross-linked TiNb2O7 nanorod electrode: Towards superior lithium storage for flexible lithium-ion capacitors. Sci. China Mater. 2020, 63, 492–504. [Google Scholar] [CrossRef]
- Li, H.; Shen, L.; Wang, J.; Fang, S.; Zhang, Y.; Dou, H.; Zhang, X. Three-dimensionally ordered porous TiNb2O7 nanotubes: A superior anode material for next generation hybrid supercapacitors. J. Mater. Chem. A 2015, 3, 16785–16790. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-C.; Wang, K.-S.; Lin, Y.-T.; Huang, J.-H.; Wu, N.-J.; Kang, J.-L.; Weng, H.-C.; Liu, T.-Y. Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Polymers 2023, 15, 2502. https://doi.org/10.3390/polym15112502
Hsu S-C, Wang K-S, Lin Y-T, Huang J-H, Wu N-J, Kang J-L, Weng H-C, Liu T-Y. Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Polymers. 2023; 15(11):2502. https://doi.org/10.3390/polym15112502
Chicago/Turabian StyleHsu, Shih-Chieh, Kuan-Syun Wang, Yan-Ting Lin, Jen-Hsien Huang, Nian-Jheng Wu, Jia-Lin Kang, Huei-Chu Weng, and Ting-Yu Liu. 2023. "Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors" Polymers 15, no. 11: 2502. https://doi.org/10.3390/polym15112502
APA StyleHsu, S. -C., Wang, K. -S., Lin, Y. -T., Huang, J. -H., Wu, N. -J., Kang, J. -L., Weng, H. -C., & Liu, T. -Y. (2023). Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Polymers, 15(11), 2502. https://doi.org/10.3390/polym15112502