Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Chemicals
2.2. Synthesis of DL-BPF
2.3. Photocrosslinking Conditions
2.4. Polymer Characterization
2.4.1. NMR Spectroscopy
2.4.2. Gel Permeation Chromatography
2.4.3. Differential Scanning Calorimetry (DSC)
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4.6. Derivation of Gel Content
2.4.7. Measurement of Refractive Index
2.4.8. Cytotoxicity Test
3. Results
3.1. Spectral Characterization of 1H-NMR and 13C-NMR
3.2. Gel Formation and Gel Permeation Chromatography of DL-BPF
3.3. Refractive Index of Photocrosslinked DL-BPF
3.4. Thermal Analysis
3.5. The Cytotoxicity Testing of Photocrosslinked DL-BPF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stefaniak, K.; Masek, A. Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials 2021, 14, 5254. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Capuana, E.; Lopresti, F.; Ceraulo, M.; La Carrubba, V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers 2022, 14, 1153. [Google Scholar] [CrossRef] [PubMed]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [PubMed]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316–13368. [Google Scholar] [CrossRef]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef]
- Jem, K.J.; Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. [Google Scholar] [CrossRef]
- Jin, F.-L.; Hu, R.-R.; Park, S.-J. Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Compos. Part B Eng. 2018, 164, 287–296. [Google Scholar] [CrossRef]
- Kost, B.; Basko, M.; Bednarek, M.; Socka, M.; Kopka, B.; Łapienis, G.; Biela, T.; Kubisa, P.; Brzeziński, M. The influence of the functional end groups on the properties of polylactide-based materials. Prog. Polym. Sci. 2022, 130, 101556. [Google Scholar] [CrossRef]
- Corneillie, S.; Smet, M. PLA architectures: The role of branching. Polym. Chem. 2015, 6, 850–867. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Liu, J.; Zhou, W.; Peng, S. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int. J. Biol. Macromol. 2021, 193, 874–892. [Google Scholar] [CrossRef]
- Nouri, S.; Dubois, C.; Lafleur, P.G. Synthesis and characterization of polylactides with different branched architectures. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 522–531. [Google Scholar] [CrossRef]
- Moeinzadeh, S.; Khorasani, S.N.; Ma, J.; He, X.; Jabbari, E. Synthesis and gelation characteristics of photo-crosslinkable star Poly(ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer 2011, 52, 3887–3896. [Google Scholar] [CrossRef]
- Michalski, A.; Brzeziński, M.; Lapienis, G.; Biela, T. Star-shaped and branched polylactides: Synthesis, characterization, and properties. Prog. Polym. Sci. 2019, 89, 159–212. [Google Scholar] [CrossRef]
- Deokar, M.D.; Garnaik, B.; Sivaram, S. Toughening Poly(l-lactide) Blends: Effectiveness of Sequence-Controlled Six-Arm Star-Branched Block Copolymers of Poly(l-lactide) and Poly(epsilon-caprolactone). ACS Omega 2022, 7, 9118–9129. [Google Scholar] [CrossRef]
- Moya-Lopez, C.; González-Fuentes, J.; Bravo, I.; Chapron, D.; Bourson, P.; Alonso-Moreno, C.; Hermida-Merino, D. Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics 2022, 14, 1673. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Hu, H.; Li, J.; Zhou, W.; Zhao, X.; Peng, S. Effect of maleic anhydride grafted poly(lactic acid) on rheological behaviors and mechanical performance of poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) blends. RSC Adv. 2022, 12, 31629–31638. [Google Scholar] [CrossRef]
- Santos, M.; Cernadas, T.; Martins, P.; Miguel, S.; Correia, I.; Alves, P.; Ferreira, P. Polyester-based photocrosslinkable bioadhesives for wound closure and tissue regeneration support. React. Funct. Polym. 2020, 158, 104798. [Google Scholar] [CrossRef]
- Shi, H.; Gan, Q.; Liu, X.; Ma, Y.; Hu, J.; Yuan, Y.; Liu, C. Poly(glycerol sebacate)-modified polylactic acid scaffolds with improved hydrophilicity, mechanical strength and bioactivity for bone tissue regeneration. RSC Adv. 2015, 5, 79703–79714. [Google Scholar] [CrossRef]
- Jing, Z.; Huang, X.; Liu, X.; Liao, M.; Zhang, Z.; Li, Y. Crystallization, thermal and mechanical properties of stereocomplexed poly(lactide) with flexible PLLA/PCL multiblock copolymer. RSC Adv. 2022, 12, 13180–13191. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Chen, S.-C.; Yang, K.-K.; Wang, Y.-Z. Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Adv. 2015, 5, 42162–42173. [Google Scholar] [CrossRef]
- Mangeon, C.; Renard, E.; Thevenieau, F.; Langlois, V. Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Mater. Sci. Eng. C 2017, 80, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, M.; Borska, K.; Kubisa, P. New Polylactide-Based Materials by Chemical Crosslinking of PLA. Polym. Rev. 2020, 61, 493–519. [Google Scholar] [CrossRef]
- Petchsuk, A.; Submark, W.; Opaprakasit, P. Development of crosslinkable poly(lactic acid-co-glycidyl methacrylate) copolymers and their curing behaviors. Polym. J. 2012, 45, 406–412. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, X.; Cheng, Q.; Weng, Y.; Ren, J. Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly(l-lactide) and poly(ε-caprolactone). React. Funct. Polym. 2020, 155, 104695. [Google Scholar] [CrossRef]
- Ge, F.; Huang, Y.; Luo, Y.; Jiang, L.; Dan, Y. Macromolecular chain structure design, synthesis and analysis of poly(l-lactide) linking ultraviolet absorbing groups. RSC Adv. 2014, 4, 63118–63127. [Google Scholar] [CrossRef]
- Bednarek, M.; Borska, K.; Kubisa, P. Crosslinking of Polylactide by High Energy Irradiation and Photo-Curing. Molecules 2020, 25, 4919. [Google Scholar] [CrossRef]
- Bardakova, K.; Grebenik, E.; Minaev, N.; Churbanov, S.; Moldagazyeva, Z.; Krupinov, G.; Kostjuk, S.; Timashev, P. Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Mater. Sci. Eng. C 2020, 107, 110300. [Google Scholar] [CrossRef]
- Koo, G.-H.; Jang, J. Preparation of melting-free poly(lactic acid) by amorphous and crystal crosslinking under UV irradiation. J. Appl. Polym. Sci. 2013, 127, 4515–4523. [Google Scholar] [CrossRef]
- Sharifi, S.; Grijpma, D.W. Resilient amorphous networks prepared by photo-crosslinking high-molecular-weight D,L-lactide and trimethylene carbonate macromers: Mechanical properties and shape-memory behavior. Macromol. Biosci. 2012, 12, 1423–1435. [Google Scholar] [CrossRef]
- Ronca, A.; Ambrosio, L.; Grijpma, D.W. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013, 9, 5989–5996. [Google Scholar] [CrossRef]
- Sikhosana, S.T.; Gumede, T.P.; Malebo, N.J.; Ogundeji, A.O. Poly(lactic acid) and its composites as functional materials for 3-D scaffolds in biomedical applications: A mini review of recent trends. Express Polym. Lett. 2021, 15, 568–580. [Google Scholar] [CrossRef]
- Shashkova, V.T.; Matveeva, I.A.; Glagolev, N.N.; Zarkhina, T.S.; Cherkasova, A.V.; Kotova, S.L.; Timashev, P.; Solovieva, A.B. Synthesis of polylactide acrylate derivatives for the preparation of 3D structures by photo-curing. Mendeleev Commun. 2016, 26, 418–420. [Google Scholar] [CrossRef]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.; Pereira, M.F.R.; Figueiredo, J.L. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
- Rosli, N.A.; Karamanlioglu, M.; Kargarzadeh, H.; Ahmad, I. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. Int. J. Biol. Macromol. 2021, 187, 732–741. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Qiu, Q.H.; Ji, L.; Wang, C.Y.; Zhang, M.L. Synthesis and characterisation of 9,9-bis(4-hydroxyphenyl)-fluorene catalysed by cation exchanger. Pigment Resin Technol. 2008, 37, 9–15. [Google Scholar] [CrossRef]
- Seesukphronrarak, S.; Takata, T. Novel Fluorene-based Biphenolic Monomer: 9,9-Bis(4-hydroxyphenyl)-9-silafluorene. Chem. Lett. 2007, 36, 1138–1139. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Li, X.; Jian, X.; Wang, J. Improving the Thermal Properties of Polycarbonate via the Copolymerization of a Small Amount of Bisphenol Fluorene with Bisphenol A. Int. J. Polym. Sci. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Preparation of Fluorene-containing Cross-linkable Poly(arylene ether ketone)s. China Plast. 2011, 25, 35–38.
- Kim, J.W.; Shim, J.-J.; Ra, C.S. Improved Procedure for the Preparation of 9,9′-bis(4-(glycidyloxy)phenyl)fluorene. Clean Technol. 2012, 18, 325–328. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Ding, Q.; He, M. An UV-curable epoxy acrylate oligomer with high refractive index containing fluorene: Preparation, characterization, and application. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Katsurada, S.; Sato, H.; Tokumitsu, K.; Yamada, M.; Sugimoto, M. Mechanical and Thermal Properties of Polylactic Acid with Cellulose Nanofiber Modified by Cardo Material (BPFG) or Bisphenol-A Diglycidyl Ether (BPAG) (II). Nihon Reoroji Gakkaishi 2016, 45, 25–32. [Google Scholar] [CrossRef]
- Martelo, L.; Jiménez, A.; Valente, A.J.; Burrows, H.D.; Marques, A.T.; Forster, M.; Scherf, U.; Peltzer, M.; Fonseca, S.M. Incorporation of polyfluorenes into poly(lactic acid) films for sensor and optoelectronics applications. Polym. Int. 2012, 61, 1023–1030. [Google Scholar] [CrossRef]
- de França, J.O.C.; Valadares, D.D.S.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef]
- Yu, C.-F.; Rwei, S.-P.; Shu, Y.-C. One-pot synthesis of liquid photocrosslinkable poly(l-lactide) with terminal triacrylate. RSC Adv. 2023, 13, 2331–2338. [Google Scholar] [CrossRef]
- Averianov, I.V.; Korzhikov-Vlakh, V.A.; Moskalenko, Y.E.; Smirnova, V.E.; Tennikova, T.B. One-pot synthesis of poly(lactic acid) with terminal methacrylate groups for the adjustment of mechanical properties of biomaterials. Mendeleev Commun. 2017, 27, 574–576. [Google Scholar] [CrossRef]
- Song, J.; Xu, J.; Pispas, S.; Zhang, G. One-pot synthesis of poly(l-lactide)-b-poly(methyl methacrylate) block copolymers. RSC Adv. 2015, 5, 38243–38247. [Google Scholar] [CrossRef]
- Gonçalves, C.M.B.; Coutinho, J.O.A.P.; Marrucho, I.M. Properties, Poly(L-actide Acid): Synthesis, Structures, Properties, Processing, and Applications; Chapter 8: Optical Properties. 2010; pp. 97–112. [Google Scholar]
Polymer | DL:BPF a | Mnc (g/mol) | MnGPCb (g/mol) | MwGPCb (g/mol) | Mw/MnGPCb | Gel Residue (%) |
---|---|---|---|---|---|---|
5DL-BPF | 5:1 | 1326 | 1252 | 1952 | 1.55 | 90.68 |
10DL-BPF | 10:1 | 2046 | 2102 | 3313 | 1.57 | 93.55 |
15DL-BPF | 15:1 | 2766 | 2856 | 4510 | 1.57 | 90.03 |
20DL-BPF | 20:1 | 3486 | 3885 | 6165 | 1.58 | 90.94 |
Polymer | Refractive Index (nD) |
---|---|
BPF | 1.6002 |
5DL-BPF | 1.5276 |
10DL-BPF | 1.5052 |
15DL-BPF | 1.4946 |
20DL-BPF | 1.4852 |
Polymer | Tg,DSCA (°C) | Tg,DSCB (°C) | T5%,TGAC (°C) | Tmax1,TGAD | Tmax2,TGAD | Tmax3,TGAD |
---|---|---|---|---|---|---|
PDLLA | 41.3 | ––– | 272.04 | 319.37 | ––– | ––– |
BPF | −13.1 | 70.0 | 213.60 | ––– | 420.95 | 626.01 |
5DL-BPF | 30.8 | 61.1 | 283.87 | 322.20 | 402.4 | 591.73 |
10DL-BPF | 35.3 | 55.5 | 283.10 | 330.56 | 394.49 | 608.22 |
15DL-BPF | 32.0 | 53.7 | 285.73 | 347.60 | 397.11 | 559.11 |
20DL-BPF | 33.6 | 47.2 | 292.67 | 348.75 | 392.33 | 560.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-F.; Rwei, S.-P.; Yang, S.-J.; Tsen, W.-C.; Lin, L.-H. Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures. Polymers 2023, 15, 2555. https://doi.org/10.3390/polym15112555
Yu C-F, Rwei S-P, Yang S-J, Tsen W-C, Lin L-H. Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures. Polymers. 2023; 15(11):2555. https://doi.org/10.3390/polym15112555
Chicago/Turabian StyleYu, Chung-Fu, Syang-Peng Rwei, Shung-Jim Yang, Wen-Chin Tsen, and Li-Huei Lin. 2023. "Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures" Polymers 15, no. 11: 2555. https://doi.org/10.3390/polym15112555
APA StyleYu, C. -F., Rwei, S. -P., Yang, S. -J., Tsen, W. -C., & Lin, L. -H. (2023). Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures. Polymers, 15(11), 2555. https://doi.org/10.3390/polym15112555