Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Measurements
2.2. Reagents and Solvents
2.3. Synthetic Procedures for Monomers and Polymers
2.3.1. Synthesis of 4-Bis-Chloroacetyl-Diphenylsulfide (M1)
2.3.2. Synthesis of 4-Bis-2-Aminothiazole-Diphenylsulfide (M2)
2.3.3. Synthesis of Heteroaromatic PU1–5 Derivatives
General Polymerization Process
2.4. Antimicrobial Screening
2.4.1. Antibacterial Screening
2.4.2. Antifungal Screening
2.5. Docking Measurements
3. Results and Discussion
3.1. Chemistry and Characterization Tools
3.2. Antimicrobial Screening
3.3. Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holzworth, K.; Jia, Z.; Amirkhizi, A.; Qiao, J.; Nemat-Nasser, S. Effect of isocyanate content on thermal and mechanical properties of polyurea. Polymer 2013, 54, 3079–3085. [Google Scholar] [CrossRef]
- Pathak, J.A.; Twigg, J.N.; Nugent, K.E.; Ho, D.L.; Lin, E.K.; Mott, P.H.; Robertson, C.G.; Vukmir, M.K.; Epps, I.T.H.; Roland, C.M. Structure Evolution in a Polyurea Segmented Block Copolymer Because of Mechanical Deformation. Macromolecules 2008, 41, 7543–7548. [Google Scholar] [CrossRef] [Green Version]
- Roland, C.; Casalini, R. Effect of hydrostatic pressure on the viscoelastic response of polyurea. Polymer 2007, 48, 5747–5752. [Google Scholar] [CrossRef]
- Fragiadakis, D.; Gamache, R.; Bogoslovov, R.; Roland, C. Segmental dynamics of polyurea: Effect of stoichiometry. Polymer 2010, 51, 178–184. [Google Scholar] [CrossRef]
- Miyamoto, M.; Takashima, Y.; Kimura, Y. Preparation of Novel Thermally Stable Polyurea by the Cationic Ring-Opening Isomerization Polymerization of Polycyclic Pseudourea. Macromolecules 1998, 31, 6822–6827. [Google Scholar] [CrossRef]
- Sarva, S.S.; Deschanel, S.; Boyce, M.C.; Chen, W. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208–2213. [Google Scholar] [CrossRef]
- Roland, C.M.; Twigg, J.N.; Vu, Y.; Mott, P.H. High strain rate mechanical behavior of polyurea. Polymer 2007, 48, 574–578. [Google Scholar] [CrossRef]
- Raman, S.; Ngo, T.; Lu, J.; Mendis, P. Experimental investigation on the tensile behavior of polyurea at high strain rates. Mater. Des. 2013, 50, 124–129. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, H.; Sun, Y.; Zhang, Y.; Guo, Y. A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions. Polymer 2021, 212, 123111. [Google Scholar] [CrossRef]
- Hussein, M.A.; Abdel-Rahman, M.A.; Geies, A.A. New heteroaromatic polyazomethines containing naphthyridine moieties: Synthesis, characterization, and biological screening. J. Appl. Polym. Sci. 2012, 126, 2–12. [Google Scholar] [CrossRef]
- Nagaraj, S.; Kumaresh Babu, S.P. Protective polyurea coating for enhanced corrosion resistance of sole bars in railway coaches. Mater. Today Proc. 2020, 27, 2407–2411. [Google Scholar] [CrossRef]
- Bordbar, S.; Rezaeizadeh, M.; Kavian, A. Improving thermal conductivity and corrosion resistance of polyurea coating on internal tubes of gas heater by nano silver. Prog. Org. Coat. 2020, 146, 105722. [Google Scholar] [CrossRef]
- Bordbar, S.; Rezaeizadeh, M.; Kavian, A. High molecular weight multifunctional fluorescent polyurea: Isocyanate-free fast synthesis, coating applications and photoluminescence studies. Polymer 2022, 256, 125219. [Google Scholar] [CrossRef]
- Maj, M.; Ubysz, A. The reasons for the loss of polyurea coatings adhesion to the concrete substrate in chemically aggressive water tanks. Eng. Failure Anal. 2022, 142, 106774. [Google Scholar] [CrossRef]
- Almehmadi, S.J.; Alamry, K.A.; Elfaky, M.; Alqarni, S.; Samah, J.A.; Hussein, M.A. Zinc oxide doped arylidene based polyketones hybrid nanocomposites for enhanced biological activity. Mater. Res. Express 2020, 7, 075302. [Google Scholar] [CrossRef]
- Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole Ring—A Biologically Active Scaffold. Molecules 2021, 26, 3166. [Google Scholar] [CrossRef]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef]
- Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2020, 51, 670–700. [Google Scholar] [CrossRef]
- Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A Review on Chemistry, Synthesis and Therapeutic Importance of its Derivatives. Curr. Top. Med. Chem. 2016, 16, 2841–2862. [Google Scholar] [CrossRef]
- Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem. 2019, 11, 1979–1998. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Borrego, E.J.; Savka, M.A.; Dobson, R.C.; Hudson, A.O. Amino acid–derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J. Biol. Chem. 2021, 296, 100438. [Google Scholar] [CrossRef]
- Alajarín, M.; Cabrera, J.; Pastor, A.; Sánchez-Andrada, P.; Bautista, D. On the [2+2] Cycloaddition of 2-Aminothiazoles and Dimethyl Acetylenedicarboxylate. Experimental and Computational Evidence of a Thermal Disrotatory Ring Opening of Fused Cyclobutenes. J. Org. Chem. 2006, 71, 5328–5339. [Google Scholar] [CrossRef]
- D’Auria, M. Ab initio study on the photochemical isomerization of thiazole derivatives. Tetrahedron 2002, 58, 8037–8042. [Google Scholar] [CrossRef]
- Shen, S.-S.; Lei, M.-Y.; Wong, Y.-X.; Tong, M.-L.; Teo, P.L.-Y.; Chiba, S.; Narasaka, K. Intramolecular nucleophilic substitution at an sp2 carbon: Synthesis of substituted thiazoles and imidazole-2-thiones. Tetrahedron Lett. 2009, 50, 3161–3163. [Google Scholar] [CrossRef]
- Huang, Y.; Gan, H.; Li, S.; Xu, J.; Wu, X.; Yao, H. Oxidation of 4-carboxylate thiazolines to 4-carboxylate thiazoles by molecular oxygen. Tetrahedron Lett. 2010, 51, 1751–1753. [Google Scholar] [CrossRef]
- Obushak, N.D.; Matiichuk, V.S.; Vasylyshin, R.Y.; Ostapyuk, Y.V. Heterocyclic Syntheses on the Basis of Arylation Products of Unsaturated Compounds: X. 3-Aryl-2-chloropropanals as Reagents for the Synthesis of 2-Amino-1,3-thiazole Derivatives. Russ. J. Org. Chem. 2004, 40, 383–389. [Google Scholar] [CrossRef]
- Breitung, E.M.; Shu, C.-F.; McMahon, R.J. Thiazole and Thiophene Analogues of Donor−Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure−Property Relationships. J. Am. Chem. Soc. 2000, 122, 1154–1160. [Google Scholar] [CrossRef]
- D’Auria, M.; Racioppi, R.; Viggiani, L.; Zanirato, P. Photochemical Reactivity of 2-Azido-1,3-thiazole and 2-Azido-1,3-benzothiazole: A Procedure for the Aziridination of Enol Ethers. Eur. J. Org. Chem. 2009, 2009, 932–937. [Google Scholar] [CrossRef]
- Pinto, M.; Takahata, Y.; Atvars, T. Photophysical properties of 2,5-diphenyl-thiazolo[5,4-d]thiazole. J. Photochem. Photobiol. A Chem. 2001, 143, 119–127. [Google Scholar] [CrossRef]
- Aly, K.I.; Abbady, M.A.; Mahgoub, S.A.; Hussein, M.A. New polymer syntheses, Part 44: Synthesis, characterization, and corrosion inhibition behavior of new polyurea derivatives based on diaryl ether in the polymers backbone. J. Appl. Polym. Sci. 2009, 112, 620–628. [Google Scholar] [CrossRef]
- Aly, K.I.; Hussein, M.A. New polymer syntheses, part 45: Corrosion inhibition behavior of novel polyurea derivatives based on diarylidenecycloalkanone moieties in the polymers backbone. J. Polym. Res. 2010, 17, 607–620. [Google Scholar] [CrossRef]
- Hussein, M.A.; Alamry, K.A.; Almehmadi, S.J.; Elfaky, M.; Džudžević-Čančar, H.; Asiri, A.M.; Hussien, M.A. Novel biologically active polyurea derivatives and its TiO2-doped nanocomposites. Des. Monomers Polym. 2020, 23, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Pei-pei, Z.; Qing-ze, J. Synthesis and Characterization of Microcapsules with Chlorpyrifos Cores and Polyurea Walls. Chem. Res. Chin. Univ. 2006, 22, 379–382. [Google Scholar] [CrossRef]
- Matolyak, L.E.; Keum, J.K.; Van de Voorde, K.M.; Korley, L.T.J. Synthetic approach to tailored physical associations in peptide-polyurea/polyurethane hybrids. Org. Biomol. Chem. 2017, 15, 7607–7617. [Google Scholar] [CrossRef]
- Wang, B.; Wang, F.; Kong, Y.; Wu, Z.; Wang, R.-M.; Song, P.; He, Y. Polyurea-crosslinked cationic acrylate copolymer for antibacterial coating. Colloids Surf. A 2018, 549, 122–129. [Google Scholar] [CrossRef]
- Sui, Y.; Cui, Y.; Xia, G.; Peng, X.; Yuan, G.; Sun, G. A facile route to preparation of immobilized cellulase on polyurea microspheres for improving catalytic activity and stability. Process Biochem. 2019, 87, 73–82. [Google Scholar] [CrossRef]
- Fu, Y.; He, H.; Liu, R.; Zhu, L.; Xia, Y.; Qiu, J. Preparation and performance of a BTDA-modified polyurea microcapsule for encapsulating avermectin. Colloids Surf. B 2019, 183, 110400. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, T.; Wang, G.; Cao, C.; Mu, W.; Li, B.; Dou, D.; Liu, F. Polyurea microcapsule encapsulation improves the contact toxicity, inhibition time and control effect of trans-2-hexenal against Fusarium graminearum. Ind. Crops Prod. 2023, 195, 116463. [Google Scholar] [CrossRef]
- Bonelli, J.; Ortega-Forte, E.; Rovira, A.; Bosch, M.; Torres, O.; Cuscó, C.; Rocas, J.; Ruiz, J.; Marchán, V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane–Polyurea Hybrid Nanocarrier. Biomacromolecules 2022, 23, 2900–2913. [Google Scholar] [CrossRef]
- Huynh, N.U.; Youssef, G. In-operando spectroscopic interrogation of macromolecular conformational changes in polyurea elastomers under high strain rate loading. J. Mech. Phys. Solids 2023, 175, 105297. [Google Scholar] [CrossRef]
- Huang, H.; Wei, H.; Huang, L.; Fan, T.; Li, X.; Zhang, Z.; Shi, T. Spontaneous alternating copolymerization of aziridines with tosyl isocyanate toward polyureas. Eur. Polym. J. 2023, 182, 111731. [Google Scholar] [CrossRef]
- Flórez-Grau, G.; Rocas, P.; Cabezón, R.; España, C.; Panés, J.; Rocas, J.; Albericio, F.; Benítez-Ribas, D. Nanoencapsulated budesonide in self-stratified polyurethane-polyurea nanoparticles is highly effective in inducing human tolerogenic dendritic cells. Int. J. Pharm. 2016, 511, 785–793. [Google Scholar] [CrossRef]
- Abbady, M.; Aly, K.; Mahgoub, S.; Hussein, M. New polymer syntheses: XV. Synthesis and characterization of new polyketoamine polymers containing ether or thioether linkages in the main chain. Polym. Int. 2005, 54, 1512–1523. [Google Scholar] [CrossRef]
- Aly, K.; Abbady, M.; Mahgoub, S.; Hussein, M. Liquid crystalline polymers IX Main chain thermotropic poly (azomethine–ether) s containing thiazole moiety linked with polymethylene spacers. J. Express Polym. Lett. 2007, 1, 197–207. [Google Scholar] [CrossRef]
- Gopal, J.; Srinivasan, M. Synthesis of polyazohydrazides. Eur. Polym. J. 1988, 24, 271–274. [Google Scholar] [CrossRef]
- William, H. Microbiological Assay: An Introduction to Quantitative Principles and Evaluation; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Srinivasan, D.; Nathan, S.; Suresh, T.; Perumalsamy, P.Z. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol. 2001, 74, 217–220. [Google Scholar] [CrossRef]
- Pisano, M.B.; Kumar, A.; Medda, R.; Gatto, G.; Pal, R.; Fais, A.; Era, B.; Cosentino, S.; Uriarte, E.; Santana, L.; et al. Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins. Molecules 2019, 24, 2815. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Janson, C.A.; Smith, W.W.; Green, S.M.; McDevitt, P.; Johanson, K.; Carter, P.; Hibbs, M.; Lewis, C.; Chalker, A.; et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 2001, 10, 2008–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA Gyrase Interaction with Coumarin-Based Inhibitors: The Role of the Hydroxybenzoate Isopentenyl Moiety and the 5′-Methyl Group of the Noviose. Biochemistry 2002, 41, 7217–7223. [Google Scholar] [CrossRef]
- Eltayeb, N.E.; Lasri, J.; Soliman, S.M.; Mavromatis, C.; Hajjar, D.; Elsilk, S.E.; Babgi, B.A.; Hussien, M.A. Crystal structure, DFT, antimicrobial, anticancer and molecular docking of (4E)-4-((aryl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one. J. Mol. Struct. 2020, 213, 128185. [Google Scholar] [CrossRef]
- Hussein, M.A. Eco-Friendly Polythiophene(keto-amine)s Based on Cyclopentanone Moiety for Environmental Remediation. J. Polym. Environ. 2018, 26, 1194–1205. [Google Scholar] [CrossRef]
- Hussein, M.A.; Abu-Zied, B.M.; Asiri, A.M. The Role of Mixed Graphene/Carbon Nanotubes on the Coating Performance of G/CNTs/Epoxy Resin Nanocomposites. Int. J. Electrochem. Sci. 2016, 11, 7644–7659. [Google Scholar] [CrossRef]
- Hussein, M.A.; El-Shishtawy, R.M.; Obaid, A.Y. The impact of graphene nano-plates on the behavior of novel conducting polyazomethine nanocomposites. RSC Adv. 2017, 7, 9998–10008. [Google Scholar] [CrossRef] [Green Version]
- Parra-Ruiz, F.; Toledano, E.; Fernández-Gutiérrez, M.; Dinjaski, N.; Prieto, M.A.; Vázquez-Lasa, B.; Román, J.S. Polymeric systems containing dual biologically active ions. Eur. J. Med. Chem. 2011, 46, 4980–4991. [Google Scholar] [CrossRef] [PubMed]
- Santuryan, Y.G.; Malakhova, I.I.; Gorshkov, N.I.; Krasikov, V.D.; Panarin, E.F. Water-soluble poly(n-vinylamides) as a basis for the synthesis of polymeric carriers of biologically active compounds. Int. J. Polym. Anal. Charact. 2019, 24, 105–113. [Google Scholar] [CrossRef]
- Rasool, R.; Hasnain, S. Biologically active and thermally stable polymeric Schiff base and its metal polychelates: Their synthesis and spectral aspects. Spectrochim. Acta Part A 2015, 148, 435–443. [Google Scholar] [CrossRef]
- Fetouh, H.A.; Ismail, A.M.; Abdel Hamid, H.; Bashier, M.O. Synthesis of promising nanocomposites from an antitumer and biologically active heterocyclic compound uploaded by clay and chitosan polymers. Int. J. Biol. Macromol. 2019, 137, 1211–1220. [Google Scholar] [CrossRef]
- Zehra, N.; Tanwar, A.S.; Khatun, M.N.; Adil, L.R.; Iyer, P.K. Chapter Six—AIE active polymers for biological applications. Prog. Mol. Biol. Transl. Sci. 2021, 185, 137–177. [Google Scholar] [CrossRef]
- Lages, M.; Nicolas, J. In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog. Polym. Sci. 2023, 137, 101637. [Google Scholar] [CrossRef]
- Long, Z.; Liu, M.; Wang, K.; Deng, F.; Xu, D.; Liu, L.; Wan, Y.; Zhang, X.; Wei, Y. Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. Mater. Sci. Eng. 2016, 66, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Kalva, N.; Uthaman, S.; Jang, E.H.; Augustine, R.; Jeon, S.H.; Huh, K.M.; Park, I.-K.; Kim, I. Aggregation-induced emission-active hyperbranched polymer-based nanoparticles and their biological imaging applications. Dyes Pigm. 2021, 186, 108975. [Google Scholar] [CrossRef]
- Podust, V.N.; Balan, S.; Sim, B.-C.; Coyle, M.P.; Ernst, U.; Peters, R.T.; Schellenberger, V. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Release. 2016, 240, 52–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, C.; Zhang, W. New Lead Structures in Antifungal Drug Discovery. Curr. Med. Chem. 2011, 18, 733–766. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Han, X.; Li, S.; Qi, H.; Song, Y.; Qiao, X. Design, Synthesis, Antifungal Activity and Molecular Docking of Thiochroman-4-one Derivatives. Chem. Pharm. Bull. 2017, 65, 904–910. [Google Scholar] [CrossRef] [Green Version]
Polymer Code | THF | DMF | HCOOH | CHCl3 | CH2Cl2 | DMSO | H2SO4 | Benzene | Acetone |
---|---|---|---|---|---|---|---|---|---|
PU1 | + | + | + − | + − | + − | + | + | − | − |
PU2 | + | + | + − | + − | + − | + | + | − | − |
PU3 | + | + | + | + − | + − | + | + | − | − |
PU4 | + | + | + | + − | + − | + | + | − | − |
PU5 | + | + | + | + − | + − | + | + | − | − |
Sample | Formula | GPC Results | |||
---|---|---|---|---|---|
a Mw | b Mn | c Pw | PDI | ||
PU1 | C26H18O2S3N6 | 36,629.54 | 32,278.21 | ~68 | 1.13 |
PU2 | C33H24O2S3N6 | 43,356.72 | 39,982.38 | ~69 | 1.08 |
PU3 | C27H20O2S3N6 | 42,318.73 | 37,762.15 | ~76 | 1.12 |
PU4 | C26H26O2S3N6 | 40,752.82 | 36,676.33 | ~74 | 1.11 |
PU5 | C26H24O2S3N6 | 38,562.90 | 32,224.77 | ~70 | 1.20 |
Polymer Code | IDT a | PDTmax b | FDT a | Temperature (°C) at the Indicated Weight Loss Level a | ||||
---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | ||||
PU1 | 135 | 383 | 616 | 131.1 | 306.4 | 357.5 | 381.5 | 437.4 |
PU2 | 151 | 392 | 655 | 237.6 | 329.7 | 361.6 | 422 | 566 |
PU3 | 153 | 420 | 665 | 154.6 | 276 | 356 | 411.4 | 528 |
PU4 | 150 | 430 | 590 | 281.8 | 351 | 372 | 398.7 | 446 |
PU5 | 148 | 425 | 605 | 295 | 355 | 375 | 393.7 | 406.7 |
Bacterial and Fungi Species | MIC (mg/mL)/Inhibition Zone (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PU1 | PU2 | PU3 | PU4 | PU5 | REF. DRUG * | ||||||
0.05 | 0.1 | 0.05 | 0.1 | 0.05 | 0.1 | 0.05 | 0.1 | 0.1 | 0.05 | 0.1 | |
P. aeruginosa (−ve) | 12 | 18 | 8 | 17 | 16 | 18 | - | - | - | 25 | 29 |
E. coli (−ve) | 12 | 18 | 7 | 15 | 15 | 19 | - | 5 | 6 | 10 | 12 |
B. cereus (+ve) | - | - | - | - | 12 | 16 | - | - | - | 20 | 25 |
B. subtilis (+ve) | - | - | - | - | 8 | 10 | - | - | - | 14 | 16 |
F. oxysporum | - | - | - | - | 7 | 12 | 8 | 14 | 12 | 16 | 22 |
C. albicans | - | - | - | - | 10 | 15 | 10 | 13 | 14 | 18 | 25 |
Compound | S | rmsd_refine | E_conf | E_place | E_score1 | E_refine | E_score2 |
---|---|---|---|---|---|---|---|
PU1 | −8.32 | 2.82 | −188.54 | −71.04 | −9.56 | −43.50 | −8.32 |
−7.10 | 1.83 | −199.04 | −54.83 | −10.00 | −42.54 | −7.10 | |
−6.96 | 3.35 | −194.20 | −60.43 | −9.89 | −42.94 | −6.96 | |
−6.84 | 1.97 | −192.40 | −36.39 | −9.70 | −37.04 | −6.84 | |
−6.83 | 3.43 | −195.25 | −52.34 | −9.78 | −35.56 | −6.83 | |
PU2 | −8.18 | 2.68 | −175.11 | −40.71 | −8.54 | −46.30 | −8.18 |
−8.15 | 1.49 | −177.01 | −76.26 | −11.76 | −49.99 | −8.15 | |
−7.57 | 2.04 | −176.19 | −52.13 | −11.08 | −43.61 | −7.57 | |
−7.45 | 1.29 | −186.73 | −71.18 | −9.39 | −45.11 | −7.45 | |
−7.44 | 1.37 | −180.86 | −40.86 | −10.28 | −44.85 | −7.44 | |
PU3 | −9.97 | 2.78 | −195.85 | −60.48 | −9.58 | −44.43 | −9.97 |
−7.34 | 2.90 | −195.46 | −52.64 | −9.32 | −40.95 | −7.34 | |
−7.22 | 1.50 | −199.60 | −37.13 | −9.76 | −43.08 | −7.22 | |
−7.12 | 1.71 | −183.44 | −60.21 | −9.48 | −41.99 | −7.12 | |
−6.89 | 1.59 | −196.45 | −76.74 | −9.56 | −42.30 | −6.89 | |
PU4 | −7.12 | 1.86 | −254.20 | −52.79 | −10.08 | −42.79 | −7.12 |
−6.83 | 1.49 | −260.67 | −71.55 | −9.81 | −40.67 | −6.83 | |
−6.70 | 3.00 | −251.28 | −74.48 | −9.72 | −37.24 | −6.70 | |
−6.55 | 3.25 | −243.10 | −65.57 | −9.67 | −35.80 | −6.55 | |
−6.47 | 3.22 | −248.20 | −69.48 | −9.40 | −37.27 | −6.47 | |
PU5 | −7.32 | 1.44 | −214.28 | −64.42 | −9.91 | −39.68 | −7.32 |
−7.16 | 3.12 | −225.18 | −76.59 | −9.39 | −41.82 | −7.16 | |
−7.00 | 1.89 | −218.32 | −59.40 | −9.35 | −37.23 | −7.00 | |
−6.98 | 1.50 | −215.39 | −32.51 | −10.32 | −38.15 | −6.98 | |
−6.95 | 3.82 | −226.98 | −71.83 | −9.44 | −36.21 | −6.95 | |
Ampicillin | −5.91 | 1.78 | 71.46 | −68.89 | −10.26 | −28.31 | −5.91 |
−5.86 | 1.70 | 71.25 | −113.25 | −10.75 | −28.46 | −5.86 | |
−5.68 | 1.52 | 70.18 | −77.40 | −9.44 | −28.92 | −5.68 | |
−5.65 | 1.63 | 68.26 | −57.00 | −9.50 | −25.64 | −5.65 | |
−5.63 | 2.18 | 69.90 | −58.44 | −9.73 | −29.62 | −5.63 | |
Coocrystaline ligand * | −6.72 | 1.89 | 63.05 | −51.27 | −10.74 | −36.22 | −6.72 |
−6.56 | 1.13 | 68.88 | −64.48 | −12.99 | −35.57 | −6.56 | |
−6.45 | 2.65 | 68.67 | −58.49 | −10.66 | −37.31 | −6.45 | |
−6.40 | 2.18 | 73.84 | −73.95 | −11.39 | −36.90 | −6.40 | |
−6.31 | 1.79 | 62.77 | −56.91 | −9.62 | −37.48 | −6.31 |
Compound | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
PU1 | S 17 | OD1 ASN 175 (A) | H-donor | 3.17 | −1.0 |
S 17 | O LEU 451 (A) | H-donor | 3.78 | −0.8 | |
N 34 | O GLU 109 (A) | H-donor | 2.86 | −1.0 | |
N 37 | O GLU 109 (A) | H-donor | 3.17 | −0.6 | |
6-ring | CA ASN 175 (A) | pi-H | 4.45 | −1.1 | |
PU2 | S 31 | O PHE 414 (A) | H-donor | 3.45 | −0.8 |
PU3 | O 43 | SG CYS 396 (A) | H-donor | 3.32 | −2.2 |
N 59 | O THR 211 (A) | H-donor | 2.89 | −0.6 | |
5-ring | 6-ring TYR 225 (A) | pi-pi | 3.75 | −0.0 | |
PU4 | O 43 | CA CYS 393 (A) | H-acceptor | 3.52 | −0.5 |
6-ring | CD2 LEU 177 (A) | pi-H | 3.58 | −0.5 | |
5-ring | 6-ring TYR 210 (A) | pi-pi | 3.77 | −0.0 | |
PU5 | N 40 | 5-ring HIS 227 (A) | H-pi | 4.54 | −0.6 |
5-ring | 6-ring TYR 210 (A) | pi-pi | 3.87 | −0.0 | |
Clotrimazole | 6-ring | CE2 TYR 354 (A) | pi-H | 3.57 | −0.5 |
Compound | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
PU1 | N 56 | O VAL 118 (A) | H-donor | 3.27 | −0.8 |
O 39 | N GLY 77 (A) | H-acceptor | 3.09 | −0.8 | |
PU2 | N 34 | OD1 ASN 46 (A) | H-donor | 2.88 | −1.6 |
6-ring | CG2 VAL 118 (A) | pi-H | 3.85 | −0.7 | |
PU3 | S 14 | O GLY 117 (A) | H-donor | 3.42 | −0.6 |
S 17 | O ALA 96 (A) | H-donor | 3.74 | −0.6 | |
N 40 | OD1 ASP 73 (A) | H-donor | 2.94 | −3.2 | |
O 39 | N GLY 77 (A) | H-acceptor | 3.14 | −0.8 | |
5-ring | CA ILE 78 (A) | pi-H | 4.55 | −0.6 | |
PU4 | S 14 | O VAL 71 (A) | H-donor | 3.38 | −0.8 |
N 37 | O VAL 118 (A) | H-donor | 3.31 | −0.7 | |
N 49 | OD1 ASP 73 (A) | H-donor | 3.14 | −0.6 | |
6-ring | CB ASN 46 (A) | pi-H | 3.76 | −0.5 | |
PU5 | N 62 | O ASP 45 (A) | H-donor | 3.22 | −0.9 |
O 39 | N GLY 77 (A) | H-acceptor | 3.00 | −2.2 | |
O 43 | NH1 ARG 136 (A) | H-acceptor | 3.41 | −1.8 | |
5-ring | CD1 ILE 78 (A) | pi-H | 3.60 | −0.5 | |
Ampicillin | S 11 | OD1 ASN 46 (A) | H-donor | 3.53 | −1.2 |
S 11 | N VAL 120 (A) | H-acceptor | 3.68 | −2.3 | |
6-ring | CB ASN 46 (A) | pi-H | 3.62 | −1.0 |
Compound | S | rmsd_refine | E_conf | E_place | E_score1 | E_refine | E_score2 |
---|---|---|---|---|---|---|---|
PU1 | −6.10 | 1.09 | −197.38 | −103.01 | −11.60 | −52.02 | −9.10 |
−8.96 | 1.53 | −191.40 | −110.64 | −12.14 | −50.77 | −8.96 | |
−8.77 | 1.79 | −190.53 | −91.83 | −12.14 | −51.93 | −8.77 | |
−8.65 | 1.50 | −187.76 | −103.18 | −11.67 | −49.78 | −8.65 | |
−8.50 | 2.81 | −192.08 | −82.72 | −11.95 | −52.62 | −8.50 | |
PU2 | −6.19 | 2.01 | −171.61 | −92.87 | −11.06 | −54.28 | −10.19 |
−9.07 | 2.65 | −188.81 | −110.51 | −11.59 | −65.98 | −10.07 | |
−9.77 | 1.63 | −178.53 | −74.76 | −12.48 | −57.47 | −9.77 | |
−9.66 | 2.04 | −179.01 | −111.53 | −11.82 | −56.45 | −9.66 | |
−9.65 | 1.66 | −164.10 | −113.76 | −10.99 | −37.83 | −9.65 | |
PU3 | −10.55 | 1.39 | −181.92 | −88.39 | −15.12 | −26.83 | −10.55 |
−8.74 | 1.32 | −179.45 | −75.81 | −11.13 | −52.64 | −8.74 | |
−8.71 | 1.83 | −186.38 | −99.22 | −11.17 | −49.58 | −8.71 | |
−8.69 | 1.55 | −185.70 | −86.65 | −11.10 | −39.86 | −8.69 | |
−8.57 | 1.63 | −192.73 | −110.09 | −11.35 | −51.56 | −8.57 | |
PU4 | −10.38 | 1.93 | −252.28 | −81.21 | −11.41 | −43.02 | −8.38 |
−8.27 | 1.98 | −256.21 | −88.77 | −11.48 | −47.00 | −8.27 | |
−8.21 | 1.07 | −253.17 | −115.55 | −12.21 | −37.40 | −8.21 | |
−8.19 | 2.18 | −253.32 | −72.08 | −13.30 | −44.80 | −8.19 | |
−8.07 | 1.27 | −256.19 | −104.55 | −11.64 | −41.54 | −8.07 | |
PU5 | −10.26 | 2.98 | −209.10 | −112.46 | −14.04 | −47.36 | −9.26 |
−9.19 | 1.34 | −221.04 | −111.48 | −12.28 | −52.10 | −9.19 | |
−9.18 | 1.10 | −221.12 | −128.05 | −12.61 | −52.65 | −9.18 | |
−9.17 | 1.20 | −202.99 | −129.44 | −12.53 | −51.57 | −9.17 | |
−9.03 | 1.82 | −209.09 | −105.05 | −11.83 | −48.56 | −9.03 | |
Clotrimazole | −10.24 | 0.83 | 101.50 | −81.28 | −9.28 | −23.71 | −6.24 |
−6.04 | 1.97 | 110.81 | −54.06 | −8.87 | −21.56 | −6.04 | |
−5.95 | 1.61 | 103.67 | −69.99 | −8.57 | −21.93 | −5.95 | |
−5.94 | 1.73 | 113.61 | −74.56 | −8.89 | −22.11 | −5.94 | |
−5.87 | 1.59 | 112.77 | −61.83 | −8.73 | −20.78 | −5.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussien, M.A.; Ashour, G.R.; Albukhari, S.M.; Saleh, T.S.; Hussein, M.A. Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers 2023, 15, 2662. https://doi.org/10.3390/polym15122662
Hussien MA, Ashour GR, Albukhari SM, Saleh TS, Hussein MA. Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers. 2023; 15(12):2662. https://doi.org/10.3390/polym15122662
Chicago/Turabian StyleHussien, Mostafa A., Gadeer R. Ashour, Soha M. Albukhari, Tamer S. Saleh, and Mahmoud A. Hussein. 2023. "Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products" Polymers 15, no. 12: 2662. https://doi.org/10.3390/polym15122662
APA StyleHussien, M. A., Ashour, G. R., Albukhari, S. M., Saleh, T. S., & Hussein, M. A. (2023). Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers, 15(12), 2662. https://doi.org/10.3390/polym15122662