Fracture Characteristics of Commercial PEEK Dental Crowns: Combining the Effects of Aging Time and TiO2 Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. PEEK Crown Preparation
2.2. Aging Treatment of Crown
2.3. Bonding PEEK Crown to Artificial Abutment Tooth
2.4. Fracture Load Measurement
2.5. Morphology Observation and Crystalline Analysis of Fracture Surface
2.6. Statistical Analysis
3. Results
3.1. Fracture Load: Effects of Aging Time and TiO2 Content
3.2. Morphology of Fracture Surface
3.3. Crystallinity of Fracture Surface
4. Discussion
4.1. Effect of Aging Time on Fracture Load
4.2. Effect of TiO2 Content on Fracture Load
4.3. Morphology of Fracture Surface
4.4. Crystallinity of Fracture Surface
4.5. Clinical Significance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arif, M.F.; Kumar, S.; Varadarajan, K.M.; Cantwell, W.J. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des. 2018, 146, 249–259. [Google Scholar] [CrossRef]
- Zalaznik, M.; Kalin, M.; Novak, S.; Jakša, G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 2016, 364–365, 31–39. [Google Scholar] [CrossRef]
- Akay, C.; Ersöz, M.B. PEEK in dentistry, properties and application areas. Int. Dent. Res. 2020, 10, 60–65. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [Green Version]
- Beuer, F.; Steff, B.; Naumann, M.; Sorensen, J.A. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur. J. Oral Sci. 2008, 116, 381–386. [Google Scholar] [CrossRef]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Different PEEK qualities irradiated with light of different wavelengths: Impact on Martens hardness. Dent. Mater. 2017, 33, 968–975. [Google Scholar] [CrossRef]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Pressure behavior of different PEEK materials for dental implants. J. Mech. Behav. Biomed. Mater. 2016, 54, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.P.; Dable, R.; Raj, A.P.N.; Mutneja, P.; Srivastava, S.B.; Haque, M. Comparison of mechanical properties of PEEK and PMMA: An in vitro study. J. Contemp. Dent. Pract. 2021, 22, 179–183. [Google Scholar]
- Muhsin, S.A.; Hatton, P.V.; Johnson, A.; Sereno, N.; Wood, D.J. Determination of polyetheretherketone (PEEK) mechanical properties as a denture material. Saudi Dent. J. 2019, 31, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Ghazal-Maghras, R.; Vilaplana-Vivo, J.; Camacho-Alonso, F.; Martínez-Beneyto, Y. Properties of polyetheretheretherketone (PEEK) implant abutments: A systematic review. J. Clin. Exp. Dent. 2022, 14, e349–e358. [Google Scholar] [CrossRef]
- Porojan, L.; Toma, F.R.; Vasiliu, R.D.; Topală, F.I.; Porojan, S.D.; Matichescu, A. Optical properties and color stability of dental PEEK related to artificial ageing and staining. Polymers 2021, 13, 4102. [Google Scholar] [CrossRef]
- Lu, W.J.; Srimaneepong, V.; Chen, C.S.; Huang, C.H.; Lin, H.C.; Liu, C.F.; Huang, H.H. Influence of aging on the fracture characteristics of polyetheretherketone dental crowns: A preliminary study. Polymers 2022, 14, 4123. [Google Scholar] [CrossRef] [PubMed]
- Erjavec, A.K.; Črešnar, K.P.; Švab, I.; Vuherer, T.; Žigon, M.; Brunčko, M. Determination of shear bond strength between PEEK composites and veneering composites for the production of dental restorations. Materials 2023, 16, 3286. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.; Durual, S.; Amez-Droz, M.; Wiskott, H.W.; Scherrer, S.S. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dent. Mater. 2016, 32, 394–402. [Google Scholar] [CrossRef]
- He, G.; Zhang, J.; Hu, Y.; Bai, Z.; Wei, C. Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance. Appl. Catal. B 2019, 250, 301–312. [Google Scholar] [CrossRef]
- Cao, R.; Peng, D.; Xu, H.; Luo, Z.; Ao, H.; Guo, S.; Fu, J. Synthesis and luminescence properties of Sr3(VO4)2: Eu3+ phosphor and emission enhancement by co-doping Li+ ion. Optik 2016, 127, 7896–7901. [Google Scholar] [CrossRef]
- Akyol, E.; Cedimagar, M.A. Size and morphology controlled synthesis of barium sulfate. Cryst. Res. Technol. 2016, 51, 393–399. [Google Scholar] [CrossRef]
- Prechtel, A.; Reymus, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Comparison of various 3D printed and milled PAEK materials: Effect of printing direction and artificial aging on Martens parameters. Dent. Mater. 2020, 36, 197–209. [Google Scholar] [CrossRef]
- Xin, H.; Shepherd, D.E.T.; Dearn, K.D. Strength of poly-ether-ether-ketone: Effects of sterilisation and thermal aging. Polym. Test. 2013, 32, 1001–1005. [Google Scholar] [CrossRef]
- Bragaglia, M.; Cherubini, V.; Nanni, F. PEEK-TiO2 composites with enhanced UV resistance. Compos. Sci. Technol. 2020, 199, 108365. [Google Scholar] [CrossRef]
- Song, J.; Liao, Z.; Shi, H.; Xiang, D.; Liu, Y.; Liu, W.; Peng, Z. Fretting wear study of PEEK-based composites for bio-implant application. Tribol. Lett. 2017, 65, 150. [Google Scholar] [CrossRef]
- Oi, L.E.; Choo, M.Y.; Lee, H.V.; Ong, H.C.; Hamid, S.B.A.; Juan, J.C. Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv. 2016, 6, 108741–108754. [Google Scholar] [CrossRef]
- Doumeng, M.; Makhlouf, L.; Berthet, F.; Marsan, O.; Delbé, K.; Denape, J.; Chabert, F. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym. Test. 2021, 93, 106878. [Google Scholar] [CrossRef]
- Abdelaziz, M.E.M.K.; Tian, L.; Hamady, M.; Yang, G.Z.; Temelkuran, B. X-ray to MR: The progress of flexible instruments for endovascular navigation. Prog. Biomed. Eng. 2021, 3, 032004. [Google Scholar] [CrossRef]
- Barba, D.; Arias, A.; Garcia-Gonzalez, D. Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: Application to PEEK. Int. J. Solids Struct. 2020, 182–183, 205–217. [Google Scholar] [CrossRef]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. PEEK high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar]
- Kohorst, P.; Dittmer, M.P.; Borchers, L.; Scholz, M.S. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta. Biomater. 2008, 4, 1440–1447. [Google Scholar] [CrossRef]
- Kurita, H.; Ikeda, K.; Kurashina, K. Evaluation of the effect of a stabilization splint on occlusal force in patients with masticatory muscle disorders. J. Oral Rehabil. 2000, 27, 79–82. [Google Scholar] [CrossRef]
- Gomes, S.G.; Custodio, W.; Faot, F.; Cury, A.A.; Garcia, R.C. Chewing side, bite force symmetry, and occlusal contact area of subjects with different facial vertical patterns. Braz. Oral Res. 2011, 25, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Shirasaki, A.; Omori, S.; Shin, C.; Takita, M.; Nemoto, R.; Miura, H. Influence of occlusal and axial tooth reduction on fracture load and fracture mode of polyetheretherketone molar restorations after mechanical cycling. Asian Pac. J. Dent. 2018, 18, 29–36. [Google Scholar]
- Khurshid, Z.; Nedumgottil, B.M.; Ali, R.M.M.; Bencharit, S.; Najeeb, S. Insufficient evidence to ascertain the long-term survival of PEEK dental prostheses: A systematic review of clinical studies. Polymers 2022, 14, 2441. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H.; Chiu, Y.H.; Lee, T.H.; Wu, S.C.; Yang, H.Y.; Su, K.H.; Hsu, C.C. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24, 3585–3592. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | 95% Confidence Interval | Degree of Freedom | p-Value | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
BreW-A5: 1 | 8972.134 | 361.339091 | 7968.895850 | 9975.372150 | ||
BreW-A10: 2 | 8794.060 | 509.953859 | 7378.201103 | 10,209.918897 | ||
BreA-A5: 3 | 7773.816 | 681.394623 | 5881.961234 | 9665.670766 | ||
BreA-A10: 4 | 7950.882 | 180.744110 | 7449.055901 | 8452.708099 | ||
1 vs. 2 | 4 | 0.775965 | ||||
1 vs. 3 | 4 | 0.152252 | ||||
1 vs. 4 | 4 | 0.059349 | ||||
2 vs. 3 | 4 | 0.323025 | ||||
2 vs. 4 | 4 | 0.143422 | ||||
3 vs. 4 | 4 | 0.820478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.-J.; Chen, W.-C.; Srimaneepong, V.; Chen, C.-S.; Huang, C.-H.; Lin, H.-C.; Tung, O.-H.; Huang, H.-H. Fracture Characteristics of Commercial PEEK Dental Crowns: Combining the Effects of Aging Time and TiO2 Content. Polymers 2023, 15, 2720. https://doi.org/10.3390/polym15122720
Lu W-J, Chen W-C, Srimaneepong V, Chen C-S, Huang C-H, Lin H-C, Tung O-H, Huang H-H. Fracture Characteristics of Commercial PEEK Dental Crowns: Combining the Effects of Aging Time and TiO2 Content. Polymers. 2023; 15(12):2720. https://doi.org/10.3390/polym15122720
Chicago/Turabian StyleLu, Wen-Ju, Wei-Cheng Chen, Viritpon Srimaneepong, Chiang-Sang Chen, Chang-Hung Huang, Hui-Ching Lin, Oi-Hong Tung, and Her-Hsiung Huang. 2023. "Fracture Characteristics of Commercial PEEK Dental Crowns: Combining the Effects of Aging Time and TiO2 Content" Polymers 15, no. 12: 2720. https://doi.org/10.3390/polym15122720
APA StyleLu, W. -J., Chen, W. -C., Srimaneepong, V., Chen, C. -S., Huang, C. -H., Lin, H. -C., Tung, O. -H., & Huang, H. -H. (2023). Fracture Characteristics of Commercial PEEK Dental Crowns: Combining the Effects of Aging Time and TiO2 Content. Polymers, 15(12), 2720. https://doi.org/10.3390/polym15122720