In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of Pd/GDY/Nano−Cu/Cuf Working Electrode
2.2.1. Preparation of Nano−Cu/Cuf
2.2.2. Preparation of GDY/Nano−Cu/Cuf Electrodes
2.2.3. Preparation of Pd/GDY/Nano−Cu/Cuf Electrodes
2.2.4. Design of the NMR−Electrochemical Cell
2.3. Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zalibera, M.; Machata, P.; Clikeman, T.T.; Rosenkranz, M.; Strauss, S.H.; Boltalina, Q.V.; Popov, A.A. 19F NMR-, ESR-, and vis-NIR- spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: Dimerization of the C70(CF3)10-radical anion. Analyst 2015, 140, 7209–7216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorte, E.G.; Jilani, S.; Tong, Y.J. Methanol and ethanol electrooxidation on PtRu and PtNiCu as studied by high-resolution in situ electrochemical NMR spectroscopy with interdigitated electrodes. Electrocatalysis 2017, 8, 95–102. [Google Scholar] [CrossRef]
- Klod, S.; Ziegs, F.; Dunsch, L. In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes. Anal. Chem. 2009, 81, 10262–10267. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.A.; Evans, D.H. Flow cell for electrolysis within the probe of a nuclear magnetic resonance spectrometer. Anal. Chem. 1975, 47, 964–966. [Google Scholar] [CrossRef]
- Silva, P.; Gomes, B.F.; Lobo, C.; Carmo, M.; Roth, C.; Colnago, L. Composite Graphite–Epoxy Electrodes for In Situ Electrochemistry Coupling with High Resolution NMR. ACS Omega 2022, 7, 4991–5000. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Kleinhammes, A.; Doyle, P.; Chen, E.; Song, Y.; Morris, A.J.; Gibbons, B.; Cai, M.; Johnson, J.K.; Shukla, P.B.; et al. In situ nuclear magnetic resonance investigation of molecular adsorption and kinetics in metal-organic framework UIO-66. J. phys. Chem. Lett. 2021, 12, 892–899. [Google Scholar] [CrossRef]
- Zhang, X.P.; Jiang, W.L.; Cao, S.H.; Sun, H.J.; You, X.Q.; Cai, S.H.; Wang, J.L.; Zhao, C.S.; Wang, X.; Chen, Z.; et al. NMR spectroelectrochemistry in studies of hydroquinone oxidation by polyaniline thin films. Electrochim. Acta 2018, 273, 300–306. [Google Scholar] [CrossRef]
- Webster, R.D. In situ electrochemical-NMR spectroscopy. Reduction of aromatic halides. Anal. Chem. 2004, 76, 1603–1610. [Google Scholar] [CrossRef]
- Gunnarsdóttir, A.B.; Vema, S.; Menkin, S.; Marbella, L.E.; Grey, C.P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 2020, 8, 14975–14992. [Google Scholar] [CrossRef]
- Albert, K.; Dreher, E.L.; Straub, H.; Rieker, A. Monitoring Electrochemical Reactions by 13C NMR Spectroscopy. Magn. Reson. Chem. 1987, 25, 919–922. [Google Scholar] [CrossRef]
- Mincey, D.W.; Popovich, M.J.; Faustino, P.J. Monltoring of Electrochemical Reactions by Nuclear Magnetic Resonance Spectrometry. Anal. Chem. 1990, 62, 1197–1200. [Google Scholar] [CrossRef]
- Bussy, U.; Giraudeau, P.; Silvestre, V.; Jaunet-Lahary, T.; Ferchaud-Roucher, V.; Krempf, M.; Akoka, S.; Tea, I.; Boujtita, M. In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites. Anal. Bioanal. Chem. 2013, 405, 5817–5824. [Google Scholar] [CrossRef]
- Boisseau, R.; Bussy, U.; Giraudeau, P.; Boujtita, M. In situ ultrafast 2D NMR spectroelectrochemistry for real-time monitoring of redox reactions. Anal. Chem. 2015, 87, 372–375. [Google Scholar] [CrossRef]
- Forse, A.C.; Griffin, J.M.; Wang, H.; Trease, N.M.; Presser, V.; Gogotsi, Y.; Simon, P.; Grey, C.P. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys. Chem. Chem. Phys. 2013, 15, 7722–7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zheng, Y.; Chen, S.; Chen, S.; Xu, J. Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. Catalysts 2020, 10, 929. [Google Scholar] [CrossRef]
- Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J.B.; Yu, J. Graphdiyne-based photocatalysts for solar fuel production. Green Chem. 2022, 24, 5739–5754. [Google Scholar] [CrossRef]
- Shang, H.; Zuo, Z.; Li, L.; Wang, F.; Liu, H.; Li, Y.; Li, Y. Ultrathin Graphdiyne Nanosheets Grown InSitu on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes. Angew. Chem. Int. Ed. 2018, 57, 774–778. [Google Scholar] [CrossRef]
- Yan, L.J.; Huang, L.F.; Hu, T.X.; Ai, Y.J.; Wang, B.; Sun, W. Synthesis of sp-hybridized nitrogen doped ultrathin graphdiyne and application to the electrochemical detection for 6,7-dihydroxycoumarin. Talanta 2022, 242, 123295. [Google Scholar] [CrossRef]
- Ai, Y.J.; Wang, L.S.; Fu, W.T.; Ye, X.; Zhou, J.; Zhang, X.P.; He, S.H.; Sun, W. Highly sensitive simultaneous stripping voltametric detection of zn2+, cd2+ and hg2+ by bismuth codeposition procedure with graphdiyne−modified Electrode. Chemosensors 2023, 11, 75. [Google Scholar] [CrossRef]
- Yan, L.J.; Hu, T.X.; Li, X.Q.; Ding, F.Z.; Wang, B.; Wang, B.L.; Zhang, B.X.; Shi, F.; Sun, W. Graphdiyne and ionic liquid composite modified goldelectrode for sensitive voltammetric analysis of rutin. Electroanalysis 2022, 34, 286–293. [Google Scholar] [CrossRef]
- Lokteva, E.S.; Rostovshchikova, T.N.; Kachevskii, S.A.; Golubina, E.V.; Smirnov, V.V.; Stakheev, A.Y.; Telegina, N.S.; Gurevich, S.A.; Kozhevin, V.M.; Yavsin, D.A. High catalytic activity and stability of palladium nanoparticles prepared by the laser electrodispersion method in chlorobenzene hydrodechlorination. Kinet. Catal. 2008, 49, 748–755. [Google Scholar] [CrossRef]
- Harada, T.; Ikeda, S.; Hashimoto, F.; Sakata, T.; Ikeue, K.; Torimoto, T.; Matsumura, M. Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 2010, 26, 17720–17725. [Google Scholar] [CrossRef]
- Somorjai, G.A. Introduction to Surface Chemistry and Catalysis; John and Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Santinacci, L.; Djenizian, T.; Hildebrand, H.; Ecoffey, S.; Mokdad, H.; Campanella, T.; Schmuki, P. Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces. Electrochim. Acta 2003, 48, 3123–3130. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, D.; Huang, J.; Hou, H.; You, T. A composite made from palladium nanoparticles and carbon nanofibers for superior electrocatalytic oxidation of formic acid. Microchim. Acta 2014, 181, 797–803. [Google Scholar] [CrossRef]
- Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. Graphdiyne oxides as excellent substrate for electroless deposition of pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhong, L.X.; Tong, L.M.; Yu, Y.; Liu, Q.; Zhang, S.C.; Yin, C.; Qiao, L.; Li, S.Z.; Si, R.; et al. Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423. [Google Scholar] [CrossRef]
- Bussy, U.; Boujtita, M. Review of advances in coupling electrochemistry and liquid state NMR. Talanta 2015, 136, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Prenzler, P.D.; Bramley, R.; Downing, S.R.; Graham, A.H. High-field NMR spectroelectrochemistry of spinning solutions: Simultaneous in situ detection of electrogenerated species in a standard probe under potentiostatic control. Electrochem. Commun. 2000, 2, 516–521. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zwanziger, J.W. Design and applications of an in situ electrochemical NMR cell. J. Magn. Reson. 2011, 208, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Guo, Y.; Yi, Y.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 2016, 30, 858–866. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haley, M.M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 2008, 80, 519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yang, L.; Zhang, X.; Chen, Y.; Zhang, Y.; Sun, W. In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry. Polymers 2023, 15, 2726. https://doi.org/10.3390/polym15122726
Zhang S, Yang L, Zhang X, Chen Y, Zhang Y, Sun W. In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry. Polymers. 2023; 15(12):2726. https://doi.org/10.3390/polym15122726
Chicago/Turabian StyleZhang, Siyue, Lin Yang, Xiaoping Zhang, Yuxue Chen, Yutong Zhang, and Wei Sun. 2023. "In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry" Polymers 15, no. 12: 2726. https://doi.org/10.3390/polym15122726
APA StyleZhang, S., Yang, L., Zhang, X., Chen, Y., Zhang, Y., & Sun, W. (2023). In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry. Polymers, 15(12), 2726. https://doi.org/10.3390/polym15122726