Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Design
2.2. Specimen Preparation
2.3. Test Materials
2.4. Loading System
3. Results and Analysis
3.1. FCCC-R Tension and Compression Cyclic Loading Test Phenomenon
3.2. Tension–Compression Cyclic Loading Test Results
3.3. Tension–Tension Cyclic Loading Test Results
3.4. Comparison of Elongation under Different Loading Systems
3.5. Comparison of Mechanical Properties under Different Loading Systems
4. Finite-Element Simulation and Parametric Analysis
4.1. Material Constitutive Model
4.2. Material Constitutive Model
4.3. Comparison of Test and Simulation Results
4.4. Parametric Study and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, X.; Yang, L.; Zong, L.; Zhao, M.H.; Yin, F. Study on cyclic constitutive model and ultra low cycle fracture prediction model of duplex stainless steel. J. Constr. Steel Res. 2019, 152, 105–116. [Google Scholar] [CrossRef]
- Nip, K.H.; Gardner, L.; Davies, C.M.; Elghazouli, A.Y. Extremely low cycle fatigue tests on structural carbon steel and stainless steel. J. Constr. Steel Res. 2010, 66, 96–110. [Google Scholar] [CrossRef]
- Lukkunaprasit, P.; Tangbunchoo, T.; Rodsin, K. Enhancement of seismic performance of reinforced concrete columns with buckling-restrained reinforcement. Eng. Struct. 2011, 33, 3311–3316. [Google Scholar] [CrossRef]
- Qiu, J.L.; Gong, J.X. Research on buckling of longitudinal bars in RC columns under earthquake excitation: State of the art. China Civ. Eng. J. 2016, 49, 50–62. (In Chinese) [Google Scholar]
- Shi, Q.X.; Ma, L.C.; Wang, Q.W.; Wang, B.; Yang, K. Seismic performance of square concrete columns reinforced with grade 600 MPa longitudinal and transverse reinforcement steel under high axial load. Structures 2021, 32, 1955–1970. [Google Scholar] [CrossRef]
- Su, J.S.; Wang, J.J.; Bai, Z.Z.; Wang, W.B.; Zhao, D.X. Influence of reinforcement buckling on the seismic performance of reinforced concrete columns. Eng. Struct. 2015, 103, 174–188. [Google Scholar] [CrossRef]
- Massone, L.M.; López, E.E. Modeling of reinforcement global buckling in RC elements. Eng. Struct. 2014, 59, 484–494. [Google Scholar] [CrossRef]
- Zheng, J.F. Experiment Studies on Cyclic Behavior of Reinforcing Bars including Buckling. Master’s Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Dhakal, R.P.; Su, J. Design of transverse reinforcement to avoid premature buckling of main bars. Earthq. Eng. Struct. Dyn. 2018, 47, 147–168. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Vaghefi, M.; Hemmat, M. Evaluation the effects of stirrup spacing and buckling of steel reinforcing bars on the capacity of RC columns. Scientia Iranica 2017, 25, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
- Pereiro-Barceló, J.; Bonet Senach, J.L.; Albiol-Ibáñez, J.R. Required tie spacing to prevent inelastic local buckling of longitudinal reinforcements in RC and FRC elements. Eng. Struct. 2018, 160, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Mitra, D.C.; Bindhu, K.R. Seismic performance of RC short columns with buckling restraint reinforcement. Mag. Concr. Res. 2019, 71, 163–174. [Google Scholar] [CrossRef]
- Ruangrassamee, A.; Sawaroj, A. Seismic enhancement of reinforced-concrete columns by rebar-restraining collars. J. Earthq. Tsunami 2013, 6, 1250015.1–1250015.19. [Google Scholar] [CrossRef]
- Ye, L.P.; Feng, P. Applications and development of fiber-reinforced polymer in engineering structures. China Civ. Eng. J. 2006, 3, 24–36. (In Chinese) [Google Scholar]
- Rashid, S.M.P.; Bahrami, A. Structural Performance of Infilled Steel–Concrete Composite Thin-Walled Columns Combined with FRP and CFRP: A Comprehensive Review. Materials 2023, 16, 1564. [Google Scholar] [CrossRef]
- Baena, M.; Jahani, Y.; Torres, L.; Barris, C.; Perera, R. Flexural Performance and End Debonding Prediction of NSM Carbon FRP-Strengthened Reinforced Concrete Beams under Different Service Temperatures. Polymers 2023, 15, 851. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Cheng, S.; Yuan, J. Flexural Performance of Concrete Beams Reinforced with Continuous FRP Bars and Discrete Steel Fibers under Cyclic Loads. Polymers 2022, 14, 1399. [Google Scholar] [CrossRef] [PubMed]
- Miao, K.; Wei, Y.; Zhang, X.; Zheng, K.; Dong, F. Performance of Circular Concrete-Filled FRP-Grooved Steel Composite Tube Columns under Axial Compression. Polymers 2021, 13, 3638. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Wang, Z.Y.; Ali, K.M.; Isleem, H.F. Shear behavior of concrete beams reinforced with CFRP sheet strip stirrups using wet-layup technique. Structures 2019, 22, 43–52. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, Y.H.; Bai, Y.; Ye, L.P. Strengthening of steel members in compression by mortar-filled FRP tubes. Thin-Walled Struct. 2013, 64, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Feng, P.; Zhao, Y.; Yu, T. FRP-confined concrete core-encased rebar for RC columns: Concept and axial compressive behavior. Compos. Struct. 2019, 222, 110915.1–110915.13. [Google Scholar] [CrossRef]
- Lu, J.Z.; Huang, H.; Li, Y.K.; Mou, T. Experimental and Numerical Investigation of Axial Compression Behaviour of FRP-Confined Concrete-Core-Encased Rebar. Polymers 2023, 15, 828. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, Z.Y.; Feng, P. Cyclic axial compressive performance of the RC columns reinforced with FRP confined concrete core encased rebar. Eng. Struct. 2023, 274, 115166. [Google Scholar] [CrossRef]
- Hu, L.; Feng, P.; Yang, J.Q.; Li, Z.Y. Shear behaviour of FRP-confined concrete/UHPC core-encased rebar: Experimental investigation and design method. Eng. Struct. 2023, 284, 115951. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelic, G. Prediction of the Deterioration of FRP Composite Properties Induced by Marine Environments. J. Mar. Sci. Eng. 2022, 10, 510. [Google Scholar] [CrossRef]
- Shen, C.; Feng, P.; Sun, L.; Li, Z.Y. Experimental study of RC columns reinforced with FCCC-R under eccentric load. In Proceedings of the 29th National Conference on Structural Engineering, Wuhan, China, 16 October 2020. [Google Scholar]
- Dong, Z.Q.; Wu, G. Research progress on durability of FRP bars reinforced concrete structures. China Civ. Eng. J. 2019, 52, 1–19. (In Chinese) [Google Scholar]
- Gao, X.D.; Shao, Y.B.; Chen, C.; Feng, R.; Zhu, H.M.; Li, T. Hysteresis behavior of EQ56 high strength steel: Experimental tests and FE simulation. J. Constr. Steel Res. 2023, 201, 107730. [Google Scholar] [CrossRef]
- Dusicka, P.; Itani, A.M.; Buckle, I.G. Cyclic response of plate steels under large inelastic strains. J. Constr. Steel Res. 2007, 63, 156–164. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, Y.Y.; Wu, Q. Dependence of the cyclic response of structural steel on loading history under large inelastic strains. J. Constr. Steel Res. 2015, 104, 64–73. [Google Scholar] [CrossRef]
- Chen, F.J.; Yi, W.J. Study of high-strength steel under variable amplitude cyclic-load test. Ind. Constr. 2016, 46, 154–158. (In Chinese) [Google Scholar]
- Chaht, F.L.; Mokhtari, M.; Benzaama, H. Using a Hashin criteria to predict the damage of composite notched plate under traction and torsion behavior. Fract. Struct. Integr. 2019, 50, 331–341. [Google Scholar]
- Son, J.; Fam, A. Finite element modeling of hollow and concrete-filled fiber composite tubes in flexure: Model development. Verif. Investig. Tube Parameters. Eng. Struct. 2008, 30, 2656–2666. [Google Scholar] [CrossRef]
- Chaboche, J.L. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986, 2, 149–188. [Google Scholar] [CrossRef]
- Dai, G.X.; Wang, F.; Shi, G.; Wang, Y.Q.; Shi, Y.J. Comparison of monotonic and cyclic performances of structural steel q345 and q460. Ind. Constr. 2016, 42, 13–17. (In Chinese) [Google Scholar]
- Wang, Y.B.; Li, G.Q.; Sun, X.; Chen, S.W.; Hai, L.T. Evaluation and prediction of cyclic response of Q690D steel. Proc. Inst. Civ. Eng.-Struct. Build. 2017, 170, 788–803. [Google Scholar] [CrossRef]
- Hai, L.T.; Sun, F.F.; Zhao, C.; Li, G.Q.; Wang, Y.B. Experimental cyclic behavior and constitutive modeling of high strength structural steels. Constr. Build. Mater. 2018, 189, 1264–1285. [Google Scholar] [CrossRef]
Longitudinal Tensile Strength (MPa) | Transverse Tensile Strength (MPa) | Shear Strength (MPa) | Longitudinal Elastic Modulus (GPa) | Transverse Elastic Modulus (GPa) | Shear Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
760.2 | 55.1 | 217.1 | 45.1 | 2.7 | 14.9 | 0.23 |
Specimen Number | Loading Length (mm) | Confined Diameter (mm) | Slenderness Ratio | Unit Yield Displacement (mm) | Loading Speed (mm/min) |
---|---|---|---|---|---|
A | 240 | 40 | 10.9 | 0.54 | 3.6 |
B | 340 | 40 | 15.5 | 0.765 | 5.1 |
C | 440 | 40 | 20 | 0.99 | 6.6 |
D | 540 | 40 | 24.5 | 1.215 | 8.1 |
E | 440 | 30 | 20 | 0.99 | 6.6 |
F | 440 | 50 | 20 | 0.99 | 6.6 |
a | 240 | 0 | 10.9 | 0.54 | 3.6 |
b | 340 | 0 | 15.5 | 0.765 | 5.1 |
c | 440 | 0 | 20 | 0.99 | 6.6 |
d | 540 | 0 | 24.5 | 1.215 | 8.1 |
Specimen ID | σmax (MPa) | σmax,t (MPa) | α | σmax/σd | Maximum Strain Value | Hysteresis Envelope Area (MPa) | Fracture Stress (MPa) |
---|---|---|---|---|---|---|---|
A | 626.41 | 500.32 | 1.38 | 1.46 | 0.029 | 269.08 | 74.23 |
B | 584.90 | 451.25 | 1.21 | 1.36 | 0.029 | 161.83 | 114.31 |
C | 520.19 | 441.08 | 1.25 | 1.21 | 0.029 | 127.49 | 91.12 |
D | 503.95 | 446.40 | 1.23 | 1.17 | 0.027 | 91.20 | 66.61 |
E | 446.83 | 426.74 | 1.07 | 1.04 | 0.025 | 92.03 | 71.38 |
F | 582.40 | 425.90 | 1.40 | 1.36 | 0.027 | 121.85 | 51.34 |
a | 454.80 | 440.82 | - | 1.06 | 0.022 | 151.37 | 129.83 |
b | 443.39 | 434.92 | - | 1.03 | 0.023 | 100.58 | 116.58 |
c | 415.00 | 434.03 | - | 0.97 | 0.023 | 84.79 | 102.89 |
d | 408.20 | 431.23 | - | 0.95 | 0.022 | 67.94 | 88.52 |
Specimen ID | σmax (MPa) | σmax,t (MPa) | σmax/σd | Maximum Strain Value | Hysteresis Envelope Area (MPa) | Fracture Stress (MPa) |
---|---|---|---|---|---|---|
A | 514.6 | 473.0 | 1.20 | 0.047 | 326.31 | 71.46 |
B | 498.1 | 464.5 | 1.16 | 0.045 | 226.80 | 192.40 |
C | 472.4 | 453.1 | 1.10 | 0.037 | 114.04 | 121.07 |
a | 432.5 | 473.3 | 1.01 | 0.038 | 214.74 | 130.46 |
b | 421.3 | 456.2 | 0.98 | 0.036 | 143.72 | 119.59 |
c | 368.2 | 448.6 | 0.86 | 0.034 | 100.21 | 120.74 |
Elastic Modulus (MPa) | Yield Strength (MPa) | Tensile Strength (MPa) | Maximum Stress Elongation (%) | Elongation at Break (%) |
---|---|---|---|---|
190.2 | 429.0 | 557.5 | 13.7 | 22.8 |
Specimen Number | Elongation at Break (%) | Tensile Ultimate Strength Elongation (%) | Maximum Elongation (%) | Number of Cycles |
---|---|---|---|---|
LL-A | 4.3 | 2.4 | 4.7 | 39 |
LL-B | 4.2 | 1.7 | 4.5 | 37 |
LL-C | 3.1 | 1.1 | 3.7 | 28 |
LL-a | 3.7 | 2.2 | 3.8 | 31 |
LL-b | 3.5 | 1.5 | 3.6 | 29 |
LL-c | 3.1 | 0.8 | 3.4 | 27 |
LY-A | 2.4 | 1.6 | 2.9 | 26 |
LY-B | 2.9 | 1.1 | 2.9 | 25 |
LY-C | 3.1 | 0.6 | 2.9 | 26 |
LY-a | 2.2 | 1.1 | 2.3 | 20 |
LY-b | 2.2 | 0.4 | 2.3 | 19 |
LY-c | 2.3 | 0.6 | 2.3 | 20 |
Constitutive Model Parameters | (MPa) | Q∞ (N/mm2) | biso | Ckin,1 (N/mm2) | Ckin,2 (N/mm2) | Ckin,3 (N/mm2) | |||
---|---|---|---|---|---|---|---|---|---|
Rebar | 429 | 10 | 1.2 | 5000 | 110 | 6773 | 116 | 2854 | 34 |
Specimen ID | σmax (MPa) | FE/Test | σmax,t (MPa) | FE/Test | Hysteresis Envelope Area (MPa) | FE/Test | NB,S | NB,T |
---|---|---|---|---|---|---|---|---|
A | 611.6 | 0.981 | 535.93 | 1.071 | 218.98 | 1.114 | 10 | 10 |
B | 545.4 | 0.933 | 517.52 | 1.146 | 143.14 | 1.130 | 6 | 7 |
C | 442.7 | 0.851 | 471.84 | 1.070 | 103.02 | 1.145 | 5 | 5 |
D | 438.3 | 0.870 | 501.25 | 1.123 | 90.40 | 1.205 | 3 | 3 |
E | 426.3 | 0.954 | 478.82 | 1.122 | 105.94 | 1.274 | 3 | 3 |
F | 551.7 | 0.947 | 494.38 | 1.161 | 83.65 | 1.146 | 5 | 7 |
Parameter | Values |
---|---|
Winding layers, L | 1, 3, 5 |
Winding angle, J | 30°, 45°, 60° |
Rebar-position eccentricity, e/R | 0.15, 0.22, 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Mou, T.; Wang, C.; Huang, H.; Han, W. Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar. Polymers 2023, 15, 2728. https://doi.org/10.3390/polym15122728
Lu J, Mou T, Wang C, Huang H, Han W. Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar. Polymers. 2023; 15(12):2728. https://doi.org/10.3390/polym15122728
Chicago/Turabian StyleLu, Jingzhou, Tong Mou, Chen Wang, Han Huang, and Wenyu Han. 2023. "Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar" Polymers 15, no. 12: 2728. https://doi.org/10.3390/polym15122728
APA StyleLu, J., Mou, T., Wang, C., Huang, H., & Han, W. (2023). Research on Hysteretic Behavior of FRP-Confined Concrete Core-Encased Rebar. Polymers, 15(12), 2728. https://doi.org/10.3390/polym15122728