New Route of Tire Rubber Devulcanization Using Silanes
Abstract
:1. Introduction
2. Materials and Methods
- Preparation of the model compound.
- Devulcanization.
- Characterization.
2.1. Model Compound Preparation
2.1.1. Materials
2.1.2. Compounding
2.1.3. Curing
2.1.4. Chopping and Grinding
2.1.5. Revulcanization
2.2. Devulcanization
2.2.1. Swelling
2.2.2. Devulcanization
2.2.3. Characterization Process
2.2.4. Degree of Network Breakdown
2.2.5. Stress–Strain Properties
2.2.6. Miscibility
2.2.7. Thermogravimetric Analysis
3. Results and Discussion
3.1. Network Breakdown
3.2. Stress–Strain Properties
3.3. Miscibility Analysis
3.4. Thermogravimetric Analysis
3.5. Model Devulcanization Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, R. EngD. Thesis, Design of a Devulcanization Process for Tire Material in a Twin Screw Extruder. University of Twente, Enschede, The Netherlands, 2021. [Google Scholar]
- Ghosh, J.; Ghorai, S.; Bhunia, S.; Roy, M.; De, D. The role of devulcanizing agent for mechanochemical devulcanization of styrene butadiene rubber vulcanizate. Polym. Eng. Sci. 2018, 58, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Asaro, L.; Gratton, M.; Seghar, S.; Hocine, N.A. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- ETRMA Report. 2015. Available online: https://www.etrma.org/news/statistics-report-2015/ (accessed on 12 February 2021).
- Saiwari, S. Post-Consumer Tires Back into New Tires: De-Vulcanization and Re-Utilization of Passenger Car Tires. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2013. [Google Scholar]
- Ghorai, S.; Jalan, A.K.; Roy, M.; Das, A.; De, D. Tuning of accelerator and curing system in devulcanized green natural rubber compounds. Polym. Test. 2018, 69, 133–145. [Google Scholar]
- Warner, W.C. Methods of devulcanization. Rubber Chem. Technol. 1994, 67, 559–566. [Google Scholar] [CrossRef]
- Rajan, V.V. Devulcanization of NR Based Latex Products for Tire Application. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2006. [Google Scholar]
- Dierkes, W.K.; Dijkhuis, K.; van Hoek, J.W.; Noordermeer, J.W.M.; Reuvekamp, L.A.E.M.; Saiwari, S.; Blume, A. Designing of cradle-to-cradle loops for elastomer products. Plast. Rubber Compos. 2019, 48, 3–13. [Google Scholar] [CrossRef]
- Tolonen, E.O. Method for Grinding Materials. U.S. Patent 5115988, 26 May 1992. [Google Scholar]
- Garmater, R.A. Granulating, Separating and Classifying Rubber Tire Materials. U.S. Patent 5299744, 5 April 1994. [Google Scholar]
- Drozdovskii, V.F. Sulphur blooming in rubber compounds. Rubber Plast. Technol. 1998, 14, 116. [Google Scholar]
- Mastral, A.M.; Callen, M.S.; Murillo, R.; Garcia, T. Combustion of high calorific value waste material: Organic atmospheric pollution. Environ. Sci. Technol. 1999, 33, 4155–4158. [Google Scholar] [CrossRef]
- Pelofsky, A.H. Rubber Reclamation Using Ultrasonic Energy. U.S. Patent 3725314, 3 April 1973. [Google Scholar]
- Rooj, S.; Basak, G.C.; Maji, P.K.; Bhowmick, A.K. New route for devulcanization of natural rubber and the properties of devulcanized rubber. J. Polym. Environ. 2011, 19, 382–390. [Google Scholar] [CrossRef]
- Isayev, A.I.; Chen, J.; Tukachinsky, A. Novel ultrasonic technology for devulcanization of waste rubbers. Rubber Chem. Technol. 1995, 68, 267–280. [Google Scholar] [CrossRef]
- Yun, J.; Isayev, A.I.; Kim, S.H.; Tapale, M. Comparative analysis of ultrasonically devulcanized unfilled SBR, NR, and EPDM rubbers. J. Appl. Polym. Sci. 2003, 88, 434–441. [Google Scholar] [CrossRef]
- Dubey, V.; Pandey, S.K.; Rao, N. Research trends in the degradation of butyl rubber. J. Anal. Appl. Pyrolysis 1995, 34, 111–125. [Google Scholar] [CrossRef]
- Novotny, B.S.; Marsh, R.L.; Masters, F.C.; Tally, D.N. Microwave Devulcanization of Rubber. U.S. Patent 4104205, 1 August 1978. [Google Scholar]
- Fix, S.R. A review on devulcanization of waste tire rubber. Elastomerics 1980, 112, 38. [Google Scholar]
- Tantayanon, S.; Juikham, S. Enhanced toughening of poly(propylene) with reclaimed-tire rubber. J. Appl. Polym. Sci. 2004, 91, 510–515. [Google Scholar] [CrossRef]
- Murtland, W.O. Cryogrinding scrap into filler. Elastomerics 1978, 110, 26–30. [Google Scholar]
- Phadke, A.A.; De, S.K. Reclaiming of ground rubber tire by safe multifunctional rubber additives: I. Tetra benzylthiuram disulfide. Resour. Conserv. Recycl. 1986, 9, 271–280. [Google Scholar] [CrossRef]
- Linos, A.; Steinbuchel, A. Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: Microbial strategies and detailed surface analysis. Kautsch. Gummi Kunstst. 1998, 51. [Google Scholar]
- Tsuchii, A.; Suzuki, T.; Takeda, K. Microbial degradation of natural rubber vulcanizates. Appl. Environ. Microbiol. 1985, 50, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Rouse, M.W. Development and application of superfine tire powders for rubber compounding. Rubber World 1992, 206, 25–40. [Google Scholar]
- De, D.; Das, A.; De, D.; Dey, B.; Debnath, S.C.; Roy, B.C. Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. Eur. Polym. J. 2006, 42, 917–927. [Google Scholar] [CrossRef]
- Ghosh, J.; Hait, S.; Ghorai, S.; Mondal, D.; Wießner, S.; Das, A.; De, D. Cradle-to-cradle approach to waste tires and development of silica based green tire composites. Resour. Conserv. Recycl. 2020, 154, 104629. [Google Scholar] [CrossRef]
- Van Hoek, H.; Noordermeer, J.; Heideman, G.; Blume, A.; Dierkes, W. Best practice for de-vulcanization of waste passenger car tire rubber granulate using 2-2′-dibenzamidodiphenyldisulfide as de-vulcanization agent in a twin-screw extruder. Polymers 2021, 13, 1139. [Google Scholar] [CrossRef] [PubMed]
- Dierkes, W.; Blume, A. Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- ASTM D7750; Standard test method for cure behavior of thermosetting resins by dynamic mechanical procedures using an encapsulated specimen rheometer. ASTM International: West Conshohocken, PA, USA, 2017.
- Van Hoek, H. Closing the loop: Reuse of Devulcanized Rubber in New Tires. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2022. [Google Scholar]
- ASTM D6814; Standard Test Method for Determination of Percent Devulcanization of Crumb Rubber Based on Crosslink Density. ASTM International: West Conshohocken, PA, USA, 2018.
- Flory, P.J.; Rehner, J. Statistical mechanics of cross-linked polymer networks. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Marzocca, A.J.; Garraza, A.R.; Mansilla, M.A. Evaluation of the polymer–solvent interaction parameter χ for the system cured polybutadiene rubber and toluene. Polym. Test. 2010, 29, 119–126. [Google Scholar] [CrossRef]
- Verbruggen, M. Devulcanization of EPDM Rubber: A Mechanistic Study into a Successful Method. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2007. [Google Scholar]
- Saiwari, S.; van Hoek, J.W.; Dierkes, W.K.; Reuvekamp, L.E.; Heideman, G.; Blume, A.; Noordermeer, J.W. Upscaling of a Batch De-vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder. Materials 2016, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- ASTM D412; Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension. ASTM International: West Conshohocken, PA, USA, 2016.
- Sigma Aldrich. IR Spectrum Table; Sigma Aldrich: St. Louis, MO, USA, 2023. [Google Scholar]
Function | Ingredient | Trade Name | Supplier | Quantity (phr) |
---|---|---|---|---|
Polymer | SSBR 1 | Sprintan 4601 | Trinseo | 70 |
BR 2 | CB 24 | Arlanxeo | 30 | |
Filler system | Silica | ULTRASIL® 7000 GR | Evonik | 80 |
Silane | Si 266® | Evonik | 5.8 | |
Activators | Zinc oxide | Merck Zinc Oxide | Sigma-Aldrich | 3 |
Stearic acid | Merck Stearic Acid | Sigma-Aldrich | 2 | |
Plasticizer | TDAE oil 3 | Vivatec | H & R | 25 |
Curing system | Curing aid | Merck Sulphur | Sigma-Aldrich | 1.5 |
Pri. accelerator | Santocure CBS | Flexsys | 1.7 | |
Sec. accelerator | Perkacit DPG | Flexsys | 2.5 |
Ingredient Notation | Chemical Identification | Supplier |
---|---|---|
PS | Polysulphide: bis-triethoxy-silyl-propyl tetrasulphide | Evonik |
DS | Bis-triethoxy-silyl-propyl disulphide | Evonik |
ME | Triethoxy-silyl-propyl mercapto silane | Evonik |
AM | Triethoxy-silyl-propyl amino silane | Evonik |
VN | Triethoxy-silyl-alkenyl silane | Evonik |
VP | Triethoxy-silyl-alkenyl silane with activator | Evonik |
DPDS | Di-phenyl di-sulphide | Sigma-Aldrich |
DBD | Di-benzamido di-phenyl di-sulphide | Sigma-Aldrich |
Acetone | Acetone | Boom Lab. |
Toluene | Toluene | Boom Lab. |
THF | Tetrahydrofuran | VWR Chem. |
TiO2 | Titanium dioxide | Sigma-Aldrich |
MBTS | Mercapto-benzothiazole sulphenamide | Sigma-Aldrich |
Masterbatch (First) Step | Final (Second) Step | ||
---|---|---|---|
Action | Time [mm:ss] | Action | Time [mm:ss] |
Polymer | 00:00–00:30 | Masterbatch | - |
Mastication | 00:30–01:30 | ||
½ Silica + silane | 01:30–02:00 | Mixing | 00:00–02:00 |
Mixing | 02:00–03:00 | ||
½ Silica + silane | 03:00–03:30 | Curatives | 02:00–02:30 |
+other additives | |||
Mixing (140–150 °C) | 03:30–04:30 | ||
Ram sweep | 04:30–05:00 | Mixing | 02:30–09:00 |
Mixing (target 145 °C) | 05:00–09:00 | ||
Discharge and sheeting | - | Discharge | - |
Function | Component | Weight (%) |
---|---|---|
Base polymer | Devulcanized rubber sample | 100 |
Activators | Zinc oxide | 4 |
Stearic acid | 2 | |
Vulcanization agent | Sulphur | 2 |
Accelerator | CBS | 1 |
Devulcanization Aid Screening | ||||||||
No. | Name of DA | Temperature (°C) | Time (min) | Constant Parameters | ||||
1–4 | PS | 140 °C 160 °C | 4 min 6 min | DA (silane): 5% (w/w) Process oil: 5% (w/w) Shear rate: 150 RPM Fill factor: 80% | ||||
5–8 | DS | |||||||
9–12 | ME | |||||||
13–16 | AM | |||||||
17–20 | VN | |||||||
21–24 | VP | |||||||
Benchmark Samples | ||||||||
No. | DA | DA Conc. | Swelling | Oil | Temperature | Speed | Fill Factor | Time |
1 | DPDS | 30 mmol | 1 day at 65 °C | 5% TDAE | 220 °C | 50 rpm | 60% | 6 min |
2 | DBD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, R.; Mani, C.; Krafczyk, R.; Schnell, R.; Paasche, A.; Talma, A.; Blume, A.; Dierkes, W.K. New Route of Tire Rubber Devulcanization Using Silanes. Polymers 2023, 15, 2848. https://doi.org/10.3390/polym15132848
Ghosh R, Mani C, Krafczyk R, Schnell R, Paasche A, Talma A, Blume A, Dierkes WK. New Route of Tire Rubber Devulcanization Using Silanes. Polymers. 2023; 15(13):2848. https://doi.org/10.3390/polym15132848
Chicago/Turabian StyleGhosh, Rounak, Christian Mani, Roland Krafczyk, Rupert Schnell, Alexander Paasche, Auke Talma, Anke Blume, and Wilma K. Dierkes. 2023. "New Route of Tire Rubber Devulcanization Using Silanes" Polymers 15, no. 13: 2848. https://doi.org/10.3390/polym15132848
APA StyleGhosh, R., Mani, C., Krafczyk, R., Schnell, R., Paasche, A., Talma, A., Blume, A., & Dierkes, W. K. (2023). New Route of Tire Rubber Devulcanization Using Silanes. Polymers, 15(13), 2848. https://doi.org/10.3390/polym15132848