The Relationships between the Structure and Properties of PA56 and PA66 and Their Fibers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterizations
- Fourier-transform infrared spectroscopy
- Thermogravimetric analysis
- Differential scanning calorimetry
- Wide-angle X-ray diffraction
- Melt index test
- Rheological test
- Gel Permeation Chromatography test
- Tensile and flexural properties test
- Combustion performances test
- Biodegradability test
- Scanning Electron Microscope
3. Results and Discussion
3.1. Structural Characterization
3.2. Crystallization Behavior and Thermal Properties
3.3. Melt Rheology
3.4. Mechanical Properties
3.5. Flame Retardancy
3.6. Biodegradability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reddy, M.M.; Vivekanandhan, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar] [CrossRef]
- Montazer, M.; Nia, Z.K. Conductive nylon fabric through in situ synthesis of nano-silver: Preparation and characterization. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Patel, M.K. Plastics derived from biological sources: Present and future: A technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Volpe, V.; Lanzillo, S.; Affinita, G.; Villacci, B.; Macchiarolo, I.; Pantani, R. Lightweight high-performance polymer composite for automotive applications. Polymers 2019, 11, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zheng, N.; Dong, X.L.; Gao, J.F. Flexible carboxylated CNT/PA66 nanofibrous mat interleaved carbon fiber/epoxy laminates with improved interlaminar fracture toughness and flexural properties. Ind. Eng. Chem. Res. 2020, 59, 1151–1158. [Google Scholar] [CrossRef]
- Yang, Z.C.; Shen, C.Y.; Zou, Y.C.; Wu, D.; Zhang, H.; Chen, K.S. Application of solution blow spinning for rapid fabrication of gelatin/nylon 66 nanofibrous film. Foods 2021, 10, 2339. [Google Scholar] [CrossRef] [PubMed]
- Gan, D.S.; Liu, Y.J.; Hu, T.H.; Fan, S.H.; Liu, X.C.; Cui, L.N.; Yang, L.; Wu, Y.C.; Chen, L.; Mo, Z.X. The investigation of copolymer composition sequence on non-isothermal crystallization kinetics of bio-based polyamide 56/512. Polymers 2023, 15, 2345. [Google Scholar] [CrossRef]
- Wolff, S.; Rüppel, A.; Rida, H.A.; Heim, H.P. Emission and mechanical properties of glass and cellulose fiber reinforced bio-polyamide composites. Polymers 2023, 15, 2603. [Google Scholar] [CrossRef]
- Harmsen, P.F.H.; Hackmann, M.M.; Bos, H.L. Green building blocks for bio-based plastics. Biofuels Bioprod. Biorefining 2014, 8, 306–324. [Google Scholar] [CrossRef]
- Polen, T.; Spelberg, M.; Bott, M. Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 2013, 167, 75–84. [Google Scholar] [CrossRef]
- Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.P.; Boutevin, B. Biobased amines: From synthesis to Polymers; present and future. Chem. Rev. 2016, 116, 14181–14224. [Google Scholar] [CrossRef] [PubMed]
- Eltahir, Y.A.; Saeed, H.A.M.; Chen, Y.; Xia, Y.; Wang, Y. Effect of hot drawing on the structure and properties of novel polyamide 5,6 fibers. J. Text. Inst. 2014, 84, 1700–1707. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, N.; Kang, H.L.; Hao, X.M.; Liu, R.G. Isodimorphism in polyamide 56/polyamide 66 blends with controllable thermal and mechanical properties. ACS Appl. Polym. Mater. 2022, 4, 9407–9416. [Google Scholar] [CrossRef]
- Eltahir, Y.A.; Saeed, H.A.M.; Chen, Y.; Xia, Y.; Wang, Y. Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry. J. Polym. Eng. 2014, 34, 353–358. [Google Scholar] [CrossRef]
- Eltahir, Y.A.; Saeed, H.A.M.; Xia, Y.M.; Wang, Y.M. Preparation of polyamide 5,6 (PA56) fibers and its Mechanical Properties. Adv. Mater. Res. 2014, 937, 86–91. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, Y.; Xu, Y.H.; Liu, X.C.; Guo, W.H. Modification of biobased polyamide 56 to achieve ultra-toughening. Polym.-Plast. Tech. Mater. 2021, 60, 1585–1604. [Google Scholar] [CrossRef]
- Hao, X.; Li, Y.; Wang, J.; Guo, Y.; Yang, Y. Study on acid dyestuff dyeing kinetics of polyamide 56 fiber compared with polyamide 6 and 66. J. Text. Res. 2015, 36, 77–80, 97. [Google Scholar]
- Xue, C.F.; Hsu, K.M.; Chiu, C.Y.; Chang, Y.K.; Ng, I.S. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere 2021, 266, 128967. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Wang, X.; Yu, J.; Ding, B. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. J. Colloid Interface Sci. 2015, 457, 203–211. [Google Scholar] [CrossRef]
- Morales-Gamez, L.; Soto, D.; Franco, L.; Puiggali, J. Brill transition and melt crystallization of nylon 56 An odd-even polyamide with two hydrogen-bonding directions. Polymer 2010, 51, 5788–5798. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martin, P.P.; Fita, S.; Wonneberger, M.; Verdejo, E.; Vanfleteren, F.; Lapena, N.; Gonzalez, A. Life cycle assessment of novel aircraft interior panels made from renewable or recyclable polymers with natural fiber reinforcements and non-halogenated flame retardants. J. Ind. Ecol. 2018, 22, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, Y.; Wang, Y.; Dong, F.; Liu, H.; Xu, X. A natural polymer with desirable self-healing and recyclable, antibacterial, and adhesive properties based on turpentine monomer. Mat. Chem. Front. 2023, 7, 333–344. [Google Scholar] [CrossRef]
- Haider, T.P.; Volker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.Y.; Chang, R.D.; Zillante, G. Challenges for China’s energy conservation and emission reduction. Energy Policy 2014, 74, 709–713. [Google Scholar] [CrossRef]
- Pope, C.G. X-ray diffraction and the Bragg equation. J. Chem. Educ. 1997, 74, 129. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; dos Santos, C.M.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, H.L.; Wang, R.; Liu, R.G.; Hao, X.M. Crystallization of polyamide 56/polyamide 66 blends: Non-isothermal crystallization kinetics. J. Appl. Polym. Sci. 2018, 135, 46409. [Google Scholar] [CrossRef]
- Yang, T.T.; Gao, Y.B.; Wang, X.L.; Ma, B.M.; He, Y. Hydrogen bonding and crystalline structure of bio-based PA56. Polymer 2021, 237, 124356. [Google Scholar] [CrossRef]
- Rides, M.; Allen, C.; Omloo, H.; Nakayama, K.; Cancelli, G. Interlaboratory comparison of melt flow rate testing of moisture sensitive plastics. Polym. Test. 2009, 28, 572–591. [Google Scholar] [CrossRef]
- Dijkstra, D.J. Guidelines for rheological characterization of polyamide melts (IUPAC Technical Report). Pure Appl. Chem. 2009, 81, 339–349. [Google Scholar] [CrossRef]
- Zhao, J.W.; Jiang, K.N.; Chen, Y.X.; Chen, J.; Zheng, Y.F.; Yu, H.L.; Zhu, J.J. Preparation and Characterization of Microemulsions Based on Antarctic Krill Oil. Mar. Drugs 2020, 18, 492. [Google Scholar] [CrossRef] [PubMed]
- Vedernikov, A.N.; Safonov, A.A.; Gusev, S.A.; Carlone, P.; Tucci, F.; Akhatov, I.S. Spring-in experimental evaluation of L-shaped pultruded profiles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 747, 012013. [Google Scholar] [CrossRef]
- Vedernikov, A.; Tucci, F.; Safonov, A.; Carlone, P.; Gusev, S.; Akhatov, I. Investigation on the Shape Distortions of Pultruded Profiles at Different Pulling Speed. Procedia Manuf. 2020, 47, 1–5. [Google Scholar] [CrossRef]
- Lyu, W.Y.; Cui, Y.H.; Zhang, X.J.; Yuan, J.Y.; Zhang, W. Thermal stability, flame retardance, and mechanical propertiesof polyamide 66 modified by a nitrogen–phosphorous reactingflame retardant. Appl. Polym. Sci. 2016, 133, 43538. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Liu, W.; Li, J.; Zhang, S. The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric. Polym. Degrad. Stabil. 2009, 94, 996–1000. [Google Scholar] [CrossRef]
Samples | 2θ (Degree) | D-Spacing (nm) | Crystal Size (nm) | Crystallinity (%) |
---|---|---|---|---|
PA56 | 20.74 | 4.28 | 9.35 | 42.64 |
PA66 | 20.48 | 4.33 | 8.06 | 55.99 |
Samples | Tc,onset/°C | Tc/°C | Tc,endset/°C | ΔTc/°C |
---|---|---|---|---|
PA56-1 | 212.2 | 217.2 | 223.0 | 10.8 |
PA56-2 | 203.6 | 211.1 | 218.4 | 14.8 |
PA56-3 | 192.1 | 203.1 | 214.9 | 22.8 |
PA66 | 202.7 | 210.8 | 217.8 | 15.1 |
Samples | Tm,onset/°C | Tm/°C | Tm,endset/°C | ΔTm/°C |
---|---|---|---|---|
[email protected] °C | 246.7 | 253.9 | 258.6 | 11.9 |
[email protected] °C | 246.7 | 253.0 | 256.7 | 10.0 |
[email protected] °C | 246.2 | 252.9 | 258.4 | 12.2 |
[email protected] °C | 247.2 | 258.2 | 262.4 | 15.2 |
Samples | MFI (g/10 min) | Molecular Weight | PDI | |
---|---|---|---|---|
Mn | Mw | |||
PA56 | 26.9 ± 2.1 | 2.9 × 104 | 7.0 × 104 | 2.88 |
PA66 | 16.5 ± 0.9 | 3.5 × 104 | 7.9 × 104 | 2.37 |
Mechanical Properties | PA56 | PA66 |
---|---|---|
Tensile strength (σ)/MPa | 71.3 ± 1.9 | 60.7 ± 7.9 |
Tensile modulus (E)/MPa | 2.9 ± 0.6 | 3.3 ± 0.5 |
Yield strength/MPa | 71.3 ± 1.9 | 46.6 ± 1.9 |
Specific strength (σ/ρ)/MPa | 64.8 ± 2.0 | 55.8 ± 7.9 |
Specific stiffness (E/ρ)/MPa | 2.6 ± 0.6 | 3.0 ± 0.5 |
Yield strain/% | 5.8 ± 0.4 | 20.7 ± 0.6 |
Flexural strength/MPa | 94.6 ± 2.5 | 92.5 ± 2.2 |
Flexural modulus/MPa | 1.9 ± 0.1 | 1.7 ± 0.1 |
Notched izod/KJ m−2 | 2.1 ± 0.2 | 5.2 ± 1.1 |
Harness (R) | 117.6 ± 0.7 | 117.0 ± 0.5 |
Weeks | Tm/°C | Tc/°C | ||
---|---|---|---|---|
PA56 | PA66 | PA56 | PA66 | |
0 | 252.0 | 257.1 | 206.8 | 224.0 |
1 | 252.2 | 258.8 | 209.7 | 226.2 |
2 | 252.0 | 224.5 | 208.6 | 222.3 |
3 | 252.3 | 256.8 | 203.9 | 219.7 |
4 | 257.9 | 258.2 | 210.7 | 220.8 |
6 | 253.9 | 258.5 | 211.7 | 222.0 |
8 | 253.7 | 256.3 | 206.3 | 217.9 |
16 | 253.6 | 256.9 | 206.0 | 212.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, K.; Liu, J.; Abbay, K.; Mei, Y.; Guo, X.; Song, Y.; Guan, Q.; You, Z. The Relationships between the Structure and Properties of PA56 and PA66 and Their Fibers. Polymers 2023, 15, 2877. https://doi.org/10.3390/polym15132877
Luo K, Liu J, Abbay K, Mei Y, Guo X, Song Y, Guan Q, You Z. The Relationships between the Structure and Properties of PA56 and PA66 and Their Fibers. Polymers. 2023; 15(13):2877. https://doi.org/10.3390/polym15132877
Chicago/Turabian StyleLuo, Keming, Jiaxin Liu, Kieth Abbay, Yangjie Mei, Xiaowei Guo, Yunhe Song, Qingbao Guan, and Zhengwei You. 2023. "The Relationships between the Structure and Properties of PA56 and PA66 and Their Fibers" Polymers 15, no. 13: 2877. https://doi.org/10.3390/polym15132877
APA StyleLuo, K., Liu, J., Abbay, K., Mei, Y., Guo, X., Song, Y., Guan, Q., & You, Z. (2023). The Relationships between the Structure and Properties of PA56 and PA66 and Their Fibers. Polymers, 15(13), 2877. https://doi.org/10.3390/polym15132877