Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number
Abstract
:1. Introduction
2. Research Objects and Method of Simulation
3. Results and Discussion
3.1. Potential Energy
3.2. Dendrimer Elasticity
3.3. Interactions with the Walls
3.4. Dendrimer Shape
3.5. Density Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dendrimers and Other Dendritic Polymers; Frechet, J.M.J.; Tomalia, D.A. (Eds.) John Wiley & Sons: London, UK, 2002. [Google Scholar]
- Vogtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Thakare, S.; Shaikh, A.; Bodas, D.; Gajbhiye, V. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids Surf. B Biointerfaces 2022, 209, 112174. [Google Scholar] [CrossRef]
- Viltres, H.; López, Y.C.; Leyva, C.; Gupta, N.K.; Naranjo, A.G.; Acevedo–Peña, P.; Sanchez-Diaz, A.; Bae, J.; Kim, K.S. Polyamidoamine dendrimer-based materials for environmental applications: A review. J. Mol. Liq. 2021, 334, 116017. [Google Scholar] [CrossRef]
- Pedro-Hernández, L.D.; Martínez-García, M. Dendrimer Applications: A Brief Review. Curr. Org. Chem. 2021, 25, 1247–1269. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications—Reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 102–115. [Google Scholar] [CrossRef]
- Aurelia Chis, A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020, 25, 3982. [Google Scholar] [CrossRef]
- Hawker, C.J.; Fréchet, J.M.J. Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules. J. Am. Chem. Soc. 1990, 112, 7638–7647. [Google Scholar] [CrossRef]
- Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959. [Google Scholar] [CrossRef]
- Designing Dendrimers; Campagna, S.; Ceroni, P.; Puntoriero, F. (Eds.) John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Soler, M.; Newkome, G.R. Supramolecular Chemistry: From Molecules to Nanomaterials. In Supramolecular Dendrimer Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Crooks, R.M.; Lemon, B.I.; Sun, L.; Yeung, L.K.; Zhao, M. Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications. In Dendrimers III. Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2001. [Google Scholar]
- Ballauff, M.; Likos, C.N. Dendrimers in solution: Insight from theory and simulation. Angew. Chem. Int. Ed. 2004, 43. [Google Scholar] [CrossRef]
- Kłos, J.S.; Sommer, J.U. Coarse grained simulations of neutral and charged dendrimers. Polym. Sci. Ser. C 2013, 55, 125–153. [Google Scholar] [CrossRef]
- Hawker, C.J.; Farrington, P.J.; Mackay, M.E.; Wooley, K.L.; Fréchet, J.M.J. Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules. J. Am. Chem. Soc. 1995, 117, 4409–4410. [Google Scholar] [CrossRef]
- Sendijarevic, I.; McHugh, A.J. Effects of molecular variables and architecture on the rheological behavior of dendritic polymers. Macromolecules 2000, 33, 590–596. [Google Scholar] [CrossRef]
- Uppuluri, S.; Keinath, S.E.; Tomalia, D.A.; Dvornic, P.R. Rheology of dendrimers. I. Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules 1998, 31, 4498–4510. [Google Scholar] [CrossRef]
- Uppuluri, S.; Morrison, F.A.; Dvornic, P.R. Rheology of dendrimers. 2. Bulk polyamidoamine dendrimers under steady shear, creep, and dynamic oscillatory shear. Macromolecules 2000, 33, 2551–2560. [Google Scholar] [CrossRef]
- Vasil’ev, V.G.; Kramarenko, E.Y.; Tatarinova, E.A.; Milenin, S.A.; Kalinina, A.A.; Papkov, V.S.; Muzafarov, A.M. An unprecedented jump in the viscosity of high-generation carbosilane dendrimer melts. Polymer 2018, 146, 1–5. [Google Scholar] [CrossRef]
- Kłos, J.S.; Sommer, J.U. Dendrimer solutions: A Monte Carlo study. Soft Matter 2016, 12, 9007–9013. [Google Scholar] [CrossRef]
- Vettorel, T.; Besold, G.; Kremer, K. Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 2010, 6, 2282–2292. [Google Scholar] [CrossRef]
- Bosko, J.T.; Todd, B.D.; Sadus, R.J. Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics. J. Chem. Phys. 2004, 121, 12050–12059. [Google Scholar] [CrossRef]
- Karatasos, K. Static and dynamic behavior in model dendrimer melts: Toward the glass transition. Macromolecules 2005, 38, 4472–4483. [Google Scholar] [CrossRef]
- Boldyrev, K.; Tatarinova, E.; Meshkov, I.; Vasilenko, N.; Buzin, M.; Novikov, R.; Vasil’ev, V.; Shtykova, E.; Feigin, L.; Bystrova, A.; et al. New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer 2019, 174, 159–169. [Google Scholar] [CrossRef]
- Tatarinova, E.A.; Rebrov, E.A.; Myakushev, V.D.; Meshkov, I.B.; Demchenko, N.V.; Bystrova, A.V.; Lebedeva, O.V.; Muzafarov, A.M. Synthesis and study of the properties of the homologous series of polyallylcarbosilane dendrimers and their nonfunctional analogs. Russ. Chem. Bull. 2004, 53, 2591–2600. [Google Scholar] [CrossRef]
- Milenin, S.A.; Selezneva, E.V.; Tikhonov, P.A.; Vasil’ev, V.G.; Buzin, A.I.; Balabaev, N.K.; Kurbatov, A.O.; Petoukhov, M.V.; Shtykova, E.V.; Feigin, L.A.; et al. Hybrid polycarbosilane-siloxane dendrimers: Synthesis and properties. Polymers 2021, 13, 606. [Google Scholar] [CrossRef]
- Mironova, M.V.; Semakov, A.V.; Tereshchenko, A.S.; Tatarinova, E.A.; Getmanova, E.V.; Muzafarov, A.M.; Kulichikhin, V.G. Rheology of carbosilane dendrimers with various types of end groups. Polym. Sci. Ser. A 2010, 52, 1156–1162. [Google Scholar] [CrossRef]
- Muzafarov, A.M.; Gorbatsevich, O.B.; Rebrov, E.A.; Ignat’eva, G.M.; Chenskaya, T.B.; Myakushev, V.D.; Bulkin, A.F.; Papkov, V.S. Organosilicon dendrimers: Volume-growing polyallylcarbosilanes. Polym. Sci. 1993, 35, 1575–1580. [Google Scholar]
- Smirnova, N.N.; Lebedev, B.V.; Khramova, N.M.; Tsvetkova, L.Y.; Tatarinova, E.A.; Myakushev, V.D.; Muzafarov, A.M. The thermodynamic properties of carbosilane dendrimers of the sixth and seventh generations with terminal allyl groups in the temperature range 6–340 K. Russ. J. Phys. Chem. A 2004, 78, 1196–1201. [Google Scholar]
- Smirnova, N.N.; Stepanova, O.V.; Bykova, T.A.; Markin, A.V.; Muzafarov, A.M.; Tatarinova, E.A.; Myakushev, V.D. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from T → 0 to 600 K. Thermochim. Acta 2006, 440, 188–194. [Google Scholar] [CrossRef]
- Smirnova, N.N.; Stepanova, O.V.; Bykova, T.A.; Markin, A.V.; Tatarinova, E.A.; Muzafarov, A.M. Thermodynamic properties of carbosilane dendrimers of the seventh and ninth generations with terminal butyl groups in the temperature range from T → 0 to 600 K. Russ. Chem. Bull. 2007, 56, 1991–1995. [Google Scholar] [CrossRef]
- Sheremetyeva, N.A.; Vasiliev, V.G.; Papkov, V.S.; Pak, G.G.; Myakushev, V.D.; Kramarenko, E.Y.; Muzafarov, A.M. Rheological properties of nonfunctional derivatives of hyperbranched polycarbosilanes. Russ. Chem. Bull. 2015, 64, 2145–2151. [Google Scholar] [CrossRef]
- Dolgushev, M.; Markelov, D.A.; Lähderanta, E. Linear Viscoelasticity of Carbosilane Dendrimer Melts. Macromolecules 2019, 52, 2542–2547. [Google Scholar] [CrossRef]
- Markelov, D.A.; Shishkin, A.N.; Matveev, V.V.; Penkova, A.V.; Lähderanta, E.; Chizhik, V.I. Orientational Mobility in Dendrimer Melts: Molecular Dynamics Simulations. Macromolecules 2016, 49, 9247–9257. [Google Scholar] [CrossRef]
- Shishkin, A.N.; Markelov, D.A.; Matveev, V.V. Molecular dynamics simulation of poly(butyl)carbosilane dendrimer melts at 600 K. Russ. Chem. Bull. 2016, 65, 67–74. [Google Scholar] [CrossRef]
- Balabaev, N.K.; Mazo, M.A.; Kramarenko, E.Y. Insight into the structure of polybutylcarbosilane dendrimer melts via Extensive molecular dynamics simulations. Macromolecules 2017, 50, 432–445. [Google Scholar] [CrossRef]
- Bakirov, A.V.; Tatarinova, E.A.; Milenin, S.A.; Shcherbina, M.A.; Muzafarov, A.M.; Chvalun, S.N. Close-packed polybutylcarbosilane dendrimers of higher generations. Soft Matter 2018, 14, 9755–9759. [Google Scholar] [CrossRef]
- Sheveleva, N.N.; Dolgushev, M.; Lähderanta, E.; Markelov, D.A. Mechanical relaxation of functionalized carbosilane dendrimer melts. Phys. Chem. Chem. Phys. 2022, 24, 13049–13056. [Google Scholar] [CrossRef]
- Bessonov, V.V.; Balabaev, N.K.; Mazo, M.A. Molecular Dynamics Simulations of the Response of Dendrimer Macromolecules to Mechanical Compression. Russ. J. Phys. Chem. A 2002, 76, 1806–1809. [Google Scholar]
- Müller, T.; Yablon, D.G.; Karchner, R.; Knapp, D.; Kleinman, M.H.; Fang, H.; Durning, C.J.; Tomalia, D.A.; Turro, N.J.; Flynn, G.W. AFM studies of high-generation PAMAM dendrimers at the liquid/solid interface. Langmuir 2002, 18, 7452–7455. [Google Scholar] [CrossRef]
- Li, J.; Piehler, L.T.; Qin, D.; Baker, J.R.; Tomalia, D.A.; Meier, D.J. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir 2000, 16, 5613–5616. [Google Scholar] [CrossRef]
- Sheiko, S.S.; Eckert, G.; Ignat’eva, G.; Muzafarov, A.M.; Spiekermann, J.; Räder, H.J.; Möller, M. Solid-like states of a dendrimer liquid displayed by scanning force microscopy. Macromol. Rapid Commun. 1996, 17, 283–297. [Google Scholar] [CrossRef]
- Hierlemann, A.; Campbell, J.K.; Baker, L.A.; Crooks, R.M.; Ricco, A.J. Structural distortion of dendrimers on gold surfaces: A tapping-mode AFM investigation. J. Am. Chem. Soc. 1998, 120, 5323–5324. [Google Scholar] [CrossRef]
- Kurbatov, A.O.; Balabaev, N.K.; Mazo, M.A.; Kramarenko, E.Y. Adsorption of silicon-containing dendrimers: Effects of chemical composition, structure, and generation number. Polymers 2021, 13, 552. [Google Scholar] [CrossRef]
- Kurbatov, A.O.; Balabaev, N.K.; Mazo, M.A.; Kramarenko, E.Y. A comparative study of intramolecular mobility of single siloxane and carbosilane dendrimers via molecular dynamics simulations. Polymers 2018, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 8759. [Google Scholar]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Bekker, H.; Berendsen, H.; Dijkstra, E.; Achterop, S.; Van Drunen, R.; Van der Spoel, D.; Sijbers, A.; Keegstra, H.; Reitsma, B.; Renardus, M. Gromacs: A parallel computer for molecular dynamics simulations. Phys. Comput. 1993, 92, 252–256. [Google Scholar]
- Kurbatov, A.O.; Balabaev, N.K.; Mazo, M.A.; Kramarenko, E.Y. Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups. J. Chem. Phys. 2018, 148, 014902. [Google Scholar] [CrossRef] [PubMed]
Generation | Number of Atoms, N | Rg, nm | ||
---|---|---|---|---|
4-3 Series | 4-4 Series | 4-3 Series | 4-4 Series | |
G3 | 641 | 1.227 ± 0.010 | ||
G4 | 557 | 1937 | 1.201 ± 0.015 | 1.721 ± 0.005 |
G5 | 1133 | 5825 | 1.498 ± 0.008 | 2.403 ± 0.002 |
G6 | 2285 | 1.891 ± 0.008 | ||
G7 | 4589 | 2.373 ± 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbatov, A.O.; Balabaev, N.K.; Litvin, K.A.; Kramarenko, E.Y. Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number. Polymers 2023, 15, 4040. https://doi.org/10.3390/polym15204040
Kurbatov AO, Balabaev NK, Litvin KA, Kramarenko EY. Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number. Polymers. 2023; 15(20):4040. https://doi.org/10.3390/polym15204040
Chicago/Turabian StyleKurbatov, Andrey O., Nikolay K. Balabaev, Kirill A. Litvin, and Elena Yu. Kramarenko. 2023. "Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number" Polymers 15, no. 20: 4040. https://doi.org/10.3390/polym15204040
APA StyleKurbatov, A. O., Balabaev, N. K., Litvin, K. A., & Kramarenko, E. Y. (2023). Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number. Polymers, 15(20), 4040. https://doi.org/10.3390/polym15204040