A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optic Microstructural Analysis
3.2. Tensile Tests
3.3. Fracture Analysis
3.4. Open-Hole Tensile Tests
3.5. Three-Point Bending Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO/ASTM 52900; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2021.
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar]
- Yeole, P.S. Thermoplastic Additive Manufacturing for Composites and Molds. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2020. Available online: https://trace.tennessee.edu/utk_graddiss/6099 (accessed on 29 June 2023).
- Picard, M.; Mohanty, A.K.; Misra, M. Recent advances in additive manufacturing of engineering thermoplastics: Challenges and opportunities. RSC Adv. 2020, 10, 36058–36089. [Google Scholar] [CrossRef]
- Das, A.; Chatham, C.A.; Fallon, J.J.; Zawaski, C.E.; Gilmer, E.L.; Williams, C.B.; Bortner, M.J. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. Addit. Manuf. 2020, 34, 101218. [Google Scholar] [CrossRef]
- Türk, D.A.; Kussmaul, R.; Zogg, M.; Klahn, C.; Leutenecker-Twelsiek, B.; Meboldt, M. Composites Part Production with Additive Manufacturing Technologies. Procedia CIRP 2017, 66, 306–311. [Google Scholar] [CrossRef]
- Steuben, J.; Van Bossuyt, D.L.; Turner, C. Design for Fused Filament Fabrication Additive Manufacturing. In Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Go, J.; Schiffres, S.N.; Stevens, A.G.; Hart, A.J. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Djokikj, J.; Doncheva, E.; Tuteski, O.; Hadjieva, B. Mechanical properties of parts fabricated with additive manufacturing: A review of mechanical properties of fused filament fabrication parts. Int. Sci. J. Machines. Technol. Mater. 2022, XVI, 274–279. Available online: https://stumejournals.com/journals/mtm/2022/8/274.full.pdf (accessed on 29 June 2023).
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- DeNardo, N.M. Additive Manufacturing of Carbon Fiber-Reinforced Thermoplastic Composites. Master’s Thesis, Faculty of Purdue University, West Lafayette, IN, USA, 2016. Available online: https://docs.lib.purdue.edu/open_access_theses/939 (accessed on 29 June 2023).
- Salem, H.; Abouchadi, H.; Elbikri, K. PLA Mechanical Performance Before and After 3D Printing. Int. J. Adv. Comp. Sci. Appl. 2022, 13, 324–330. [Google Scholar]
- Grabowik, C.; Kalinowski, K.; Ćwikła, G.; Paprocka, I.; Kogut, P. Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web Conf. 2017, 112, 04017. [Google Scholar] [CrossRef]
- Farbman, D.; McCoy, C. Materials Testing of 3D Printed ABS and PLA Samples to Guide Mechanical Design. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016. [Google Scholar] [CrossRef]
- Morettini, G.; Palmieri, M.; Capponi, L.; Landi, L. Comprehensive characterization of mechanical and physical properties of PLA structures printed by FFF-3D-printing process in different directions. Prog. Addit. Manuf. 2022, 7, 1111–1122. [Google Scholar] [CrossRef]
- Catana, D.; Pop, M.A.; Brus, D.I. Comparison between the Test and Simulation Results for PLA Structures 3D Printed, Bending Stressed. Molecules 2021, 26, 3325. [Google Scholar] [CrossRef]
- Özsoy, K.; Erçetin, A.; Çevik, Z.A. Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing. Europ. J. Sci. Technol. 2021, 27, 802–809. [Google Scholar]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Sang, L.; Han, S.; Li, Z.; Yang, X.; Hou, W. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos. B Eng. 2019, 164, 629–639. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 2015, 80, 369–378. [Google Scholar]
- Ahmadifar, M.; Benfriha, K.; Shirinbayan, M.; Fitoussi, J.; Tcharkhtchi, A. Mechanical behavior of polymer-based composites using fused filament fabrication under monotonic and fatigue loadings. Polym. Polym. Compos. 2022, 30, 1–11. [Google Scholar] [CrossRef]
- Tutar, M. A Comparative Evaluation of the Effects of Manufacturing Parameters on Mechanical Properties of Additively Manufactured PA and CF-Reinforced PA Materials. Polymers 2023, 15, 38. [Google Scholar] [CrossRef]
- Sirmour, S.; Kumar, U.; Chandrakar, H.; Gupta, N. Open Hole Testing Methods for Different Materials: A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012037. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Y.; Tay, T.E.; Baiz, P.M.; Pinho, S.T. Numerical analysis of size effects on open-hole tensile composite laminates. Compos. A. 2013, 47, 52–62. [Google Scholar] [CrossRef]
- Feistle, M.; Patzold, I.; Golle, R.; Volk, W. Open hole tensile tests for the determination of the edge-crack sensitivity of sheared holes dependent on specimen geometry, cutting parameters, and the notch factor. Procedia Manuf. 2019, 29, 412–419. [Google Scholar]
- Sanei, S.H.R.; Arndt, A.; Doles, R. Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites. J. Comp. Mater. 2020, 54, 2687–2695. [Google Scholar] [CrossRef]
- Yu, S.; Colton, J.S. A compact open-hole compression test fixure for composite materials. Compos. B 2021, 223, 109126. [Google Scholar]
- Vashi, Y.; Anand, R.; Jayakrisha, K.; Rajyalakshimi, G.; Aravind Raj, S. Design and analysis of 3D printed UAV wheel. Mater. Today. 2021, 46, 8307–8312. [Google Scholar] [CrossRef]
- Kanevsky, M. Improving Quality of 3D Printed Components for Remotely Piloted Aircraft Systems with Curved Layer Fused Filament Fabrication. Master’s Thesis, Carleton University Ottawa, ON, Canada, 2022. [Google Scholar]
- Agarwal, H.; Singhal, A.; Hans Raj, K. 3D Printed Quadcopter. In Advances in Systems Engineering; Lecture Notes in Mechanical Engineering; Saran, V.H., Misra, R.K., Eds.; Springer: Singapore, 2021; pp. 491–499. [Google Scholar] [CrossRef]
- Banfield, C.P. Design and Development of a 3D Printed UAV. Bachelor Thesis, Faculty of the Graduate College of the Oklahoma State University, Stillwater, OK, USA, 2013. Available online: https://shareok.org/bitstream/handle/11244/45230/Banfield_okstate_0664M_14176.pdf?sequence=1&isAllowed=y (accessed on 29 June 2023).
- Pearson, A. World’s First Jet-Powered, 3D Printed UAV Tops 150 mph with Lightweight Stratasys Materials. 2020. Available online: https://www.stratasys.com/en/resources/blog/aurora-uav-3d-printing/ (accessed on 29 June 2023).
- García-Gascón, C.; Castelló-Pedrero, P.; García-Manrique, J.A. Minimal Surfaces as an Innovative Solution for the Design of an Additive Manufactured Solar-Powered Unmanned Aerial Vehicle (UAV). Drones 2022, 6, 285. [Google Scholar] [CrossRef]
- Banfield, C.; Kidd, J.; Jacob, J.D. Design and Development of a 3D Printed Unmanned Aerial Vehicle. In Proceeding of 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Tough PLA Datasheet. Available online: https://c.cdnmp.net/490505258/custom/prod/1_fisa_tehnica_2411.pdf?rv=1685998800 (accessed on 29 June 2023).
- nGEn CF10 Datasheet. Available online: https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E%20colorFabb%20nGen-CF10.pdf (accessed on 29 June 2023).
- UltraFuse PAHT CF15 Datasheet. Available online: https://c.cdnmp.net/490505258/custom/prod/1_fisa_tehnica_1671.pdf?rv=1685998800 (accessed on 29 June 2023).
- ISO 527-4; Plastics—Determination of Tensile Properties. Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. International Organization for Standardization: Geneva, Switzerland, 2023.
- ASTM D5766/D5766M; Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D 3039/D3039M; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials—Failure Codes. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 178; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Khosravani, M.R.; Reinicke, T. Mechanical strength of 3D-printed open hole polymer plates. Procedia Struct. 2022, 41, 664–669. [Google Scholar] [CrossRef]
- Atakok, G.; Kam, M.; Koc, H.B. Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. J. Mater. Res. Technol. 2022, 18, 1542–1554. [Google Scholar] [CrossRef]
- Aveen, K.P.; Vishwanath Bhajathari, F.; Jambagi, S.C. 3D Printing & Mechanical Characteristion of Polylactic Acid and Bronze Filled Polylactic Acid Components. IOP Conf. Ser. Mater. Sci. Eng. 2018, 376, 012042. [Google Scholar] [CrossRef]
- Wu, W.; Wang, H.; Wang, J.; Liu, Q.; Zhang, Z.; Li, L.; Gong, Y.; Zhao, J.; Ren, L.; Li, G. Hybrid Additive Manufacturing of Fused Filament Fabrication and Ultrasonic Consolidation. Polymers 2022, 14, 2385. [Google Scholar] [CrossRef]
Property | Tough PLA [36] | nGen CF10 [37] | UltraFuse PAHT CF15 [38] | |
---|---|---|---|---|
Dried Specimen | Conditioned Specimen | |||
Tensile strength (MPa) | 46 | 54.71 | 103.2 (XY) 18.2 (ZX) | 62.9 (XY) 19.1 (ZX) |
Tensile stress at break | - | 52.26 | - | - |
Tensile strain at tensile strength | - | 3.66 | - | - |
Yield strength (MPa) | - | 54.3 | - | - |
Yield strain | - | 3.75 | - | - |
Elongation at break (%) | 2750 | 4.56 | 1.8 (XY) 0.5 (ZX) | 2.9 (XY) 0.8 (ZX) |
Young’s modulus (MPa) | - | 2945.78 | 8386 (XY) 3532 (ZX) | 5052 (XY) 2455 (ZX) |
Flexural strength (MPa) | - | - | 160.7 (XY) 171.8 (XZ) 50.8 (ZX) | 125.1 (XY) 121.9 (XZ) 56.0 (ZX) |
Flexural modulus (MPa) | - | - | 8258 (XY) 7669 (XZ) 2715 (ZX) | 6063(XY) 6260 (XZ) 2190 (ZX) |
Flexural strain at break (%) | - | - | 2.4 (XY) 2.8 (XZ) 1.8 (ZX) | No break (XY) 3.6 (XZ) 4.0 (ZX) |
Monotonic Tensile Test | Open-Hole Tensile Tests | Three-Point Bending Tests | |
---|---|---|---|
Standard | ISO 527-4:1997 [39] and ASTM D 3039/D3039M [40] | ASTM D5766/D5766M [41] | ISO 178 [42] |
Dimensions | 250 × 25 × 2 mm Span length 150 mm | 300 × 36 × 2 mm with a 6 mm hole diameter in the specimens’ centers Span length of 200 mm | 80 × 10 × 4 mm Span length 68 mm |
Raster orientation | 90°/0° | ||
−45°/+45° | |||
Test conditions | Room temperature testing (24°C ± 2°C) Test speed of 5 mm/min. Five specimens/batch |
Tough PLA | nGen-CF10 | UltraFuse PAHT CF15 | |
---|---|---|---|
Nozzle temperature, °C | 225 | 240 | 260 |
Building plate temperature, °C | 60 | 85 | 95 |
Manufacturing speed, mm/s | 40 | 40 | 40 |
Manufacturing plane | XY |
Specimen/ Material | Tough PLA | nGen-CF10 | UltraFuse PAHT CF15 | |||
---|---|---|---|---|---|---|
90°/0° | −45°/+45° | 90°/0° | −45°/+45° | 90°/0° | −45°/+45° | |
#1 | LGB | AGB | LGB | AGT | LGM | LGM |
#2 | LGB | AWB | GAB | AAT | GAT | GAB |
#3 | LWB | AGB | MGB | MGM | LGM | LWT |
#4 | LGB | AWB | MGT | MGM | LWB | GAB |
#5 | LGB | LGV | MGM | MGM | LWB | LGM |
Main failure type | LGB | AWB/AGB | - | MGM | LWB | GAB |
Raster Orientation/Material | Tough PLA | nGen-CF10 | UltraFuse PAHT CF15 |
---|---|---|---|
90°/0° | 9.65% | 17.84% | 17.35% |
−45°/+45° | 15.14% | 13.01% | 11.93% |
Specimen/ Material | Tough PLA | nGen-CF10 | UltraFuse PAHT CF15 | |||
---|---|---|---|---|---|---|
90°/0° | −45°/+45° | 90°/0° | −45°/+45° | 90°/0° | −45°/+45° | |
#1 | LGM | LGM | MGM | MGM | MGM | MGM |
#2 | LGM | LGM | MGM | MGM | LGM | MGM |
#3 | LGM | LGM | MGM | MGM | LGM | LGM |
#4 | LGM | LGM | MGM | MGM | LGM | LGM |
#5 | LGM | LGM | MGM | MGM | LGM | MGM |
Main failure type | LGM | LGM | MGM | MGM | LGM | MGM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condruz, M.-R.; Paraschiv, A.; Badea, T.-A.; Useriu, D.; Frigioescu, T.-F.; Badea, G.; Cican, G. A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing. Polymers 2023, 15, 2981. https://doi.org/10.3390/polym15142981
Condruz M-R, Paraschiv A, Badea T-A, Useriu D, Frigioescu T-F, Badea G, Cican G. A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing. Polymers. 2023; 15(14):2981. https://doi.org/10.3390/polym15142981
Chicago/Turabian StyleCondruz, Mihaela-Raluca, Alexandru Paraschiv, Teodor-Adrian Badea, Daniel Useriu, Tiberius-Florian Frigioescu, Gabriel Badea, and Grigore Cican. 2023. "A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing" Polymers 15, no. 14: 2981. https://doi.org/10.3390/polym15142981
APA StyleCondruz, M. -R., Paraschiv, A., Badea, T. -A., Useriu, D., Frigioescu, T. -F., Badea, G., & Cican, G. (2023). A Study on Mechanical Properties of Low-Cost Thermoplastic-Based Materials for Material Extrusion Additive Manufacturing. Polymers, 15(14), 2981. https://doi.org/10.3390/polym15142981