Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Program
- 27 U-notched specimens with (nominal) notch radii of 0.9 mm or 1.3 mm, a/W = 0.25 or 0.50 (a being the notch length and W being the specimen width), and 3 different thicknesses (5 mm, 10 mm, and 20 mm). The notch radius of 0.9 mm covered all 3 thicknesses, while the 1.3 mm notch radius was only applied to 5-mm- and 10-mm-thick plates.
- 12 V-notched plates: V-notch with opening angle of 60°, nominal notch radius of 0.9 mm or 1.3 mm, a/W = 0.25 or 0.50, and 2 different thicknesses (5 mm and 10 mm).
- 12 plates with circular holes: nominal notch radius, ρ (or circle radius, a), fixed at 15 mm, a/W = 0.25 or 0.50, and 2 different thicknesses (5 mm and 10 mm).
2.3. Analytical Approach
3. Results and Discussion
- U-notched and V-notched plates behaved similarly. In both cases, after the peak load, clear macroscopic cracking planes following the raster orientation (+45° or −45°) resulted from a combination of the debonding of the filaments oriented at +45° (or −45°) and the failure of filaments oriented at −45° (or +45°). The initial plane was generally followed by a zig-zag pattern with a dominant macroscopic orientation at −45° (or +45°), as shown in Figure 9. This was observed for the three different thicknesses tested in the experimental program, which represents a certain difference if compared to the fracture behavior of pure PLA specimens, where, as shown in [33], the specimens may present subtle differences for the different thicknesses being considered. The mentioned behavior had two exceptions: firstly, in the case of 5-mm-thick U-notched and V-notched plates with a/W = 0.25, the combination of the filament debonding and the filament failure following the raster orientation did not develop a zig-zag pattern at the initial stages of crack propagation, with the crack extension following a dominant plane (see Figure 10). The accuracy of the critical load predictions for this exception is, however, as good as that obtained in the specimens following the zig-zag mechanisms; secondly, in U-notched specimens with W = 60 mm and a/W = 0.5 (smallest remnant ligament), the macroscopic propagation did not follow the raster orientation and was between this behavior and a flat propagation following the mid-plane of the specimen (Figure 11). The accuracy of the predictions for this second exception was the lowest obtained in the present research, corresponding to the points in Figure 8 associated with the greatest overestimations of the critical loads. This partially explains the worse results obtained for the plates with a/W = 0.5, since some of them developed different fracture mechanisms from those observed in most other geometric conditions. Here, it is important to note that the complex topography of the crack paths makes it very difficult to provide an adequate view of the different fracture processes occurring in the plates, which is the reason for providing these general views of the fractured plates and the fracture surfaces.
- The plates with a central hole, as was the case for the pure PLA material (see [33]), presented similar behavior for the two values of thickness analyzed in this work (5 mm and 10 mm) and the two values of nominal (half) width (30 mm and 60 mm). A fracture is a very complex process resulting from a combination of filament failures, the debonding between filaments, and the debonding between printing layers. The crack patterns do not follow macroscopically the raster orientation. Figure 12 shows an example with a general view of these fracture surfaces.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantrell, J.T.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C.; et al. Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts. Rapid Prototyp. J. 2017, 23, 811–824. [Google Scholar] [CrossRef]
- Bamiduro, O.; Owolabi, G.; Haile, M.A.; Riddick, J.C. The Influence of Load Direction, Microstructure, Raster Orientation on the Quasi-Static Response of Fused Deposition Modeling ABS. Rapid Prototyp. J. 2019, 25, 462–472. [Google Scholar] [CrossRef]
- Ahn, S.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic Material Properties of Fused Deposition Modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef]
- Ng, C.T.; Susmel, L. Notch Static Strength of Additively Manufactured Acrylonitrile Butadiene Styrene (ABS). Addit. Manuf. 2020, 34, 101212. [Google Scholar] [CrossRef]
- Ameri, B.; Taheri-Behrooz, F.; Aliha, M.R.M. Fracture Loads Prediction of the Modified 3D-Printed ABS Specimens under Mixed-Mode I/II Loading. Eng. Fract. Mech. 2020, 235, 107181. [Google Scholar] [CrossRef]
- Cooper, C.A.; Ravich, D.; Lips, D.; Mayer, J.; Wagner, H.D. Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix. Compos. Sci. Technol. 2002, 62, 1105–1112. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Kinloch, A.J.; Masania, K.; Sohn Lee, J.; Taylor, A.C.; Sprenger, S. The Toughness of Epoxy Polymers and Fibre Composites Modified with Rubber Microparticles and Silica Nanoparticles. J. Mater. Sci. 2010, 45, 1193–1210. [Google Scholar] [CrossRef]
- Wan, T.; Liao, S.; Wang, K.; Yan, P.; Clifford, M. Multi-Scale Hybrid Polyamide 6 Composites Reinforced with Nano-Scale Clay and Micro-Scale Short Glass Fibre. Compos. Part A Appl. Sci. Manuf. 2013, 50, 31–38. [Google Scholar] [CrossRef]
- Sreenivasulu, B.; Ramji, B.; Nagaral, M. A Review on Graphene Reinforced Polymer Matrix Composites. Mater. Today Proc. 2018, 5, 2419–2428. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Chen, W.; Li, S.; Zhao, Y.; Du, S. Improved Fracture Toughness of Epoxy Resin Reinforced with Polyamide 6/Graphene Oxide Nanocomposites Prepared via in Situ Polymerization. Compos. Sci. Technol. 2019, 171, 180–189. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, W.; Han, X.; Zhao, Y.; Du, S. Enhancement of Interlaminar Fracture Toughness in Textile-Reinforced Epoxy Composites with Polyamide 6/Graphene Oxide Interlaminar Toughening Tackifier. Compos. Sci. Technol. 2020, 191, 108094. [Google Scholar] [CrossRef]
- Cicero, S.; Parra, J.L.; Arroyo, B.; Procopio, I. Graphene Oxide Does Not Seem to Improve the Fracture Properties of Injection Molded PA6. Procedia Struct. Integr. 2020, 28, 67–73. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.-Y.; Chang, T.-Y.; Hsieh, T.-H.; Li, Y.-L.; Chiang, C.-L.; Yang, H.; Yip, M.-C. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites. J. Nanomater. 2013, 565401. [Google Scholar] [CrossRef]
- Caminero, M.; Chacón, J.; García-Plaza, E.; Núñez, P.; Reverte, J.; Becar, J. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers 2019, 11, 799. [Google Scholar] [CrossRef]
- Marconi, S.; Alaimo, G.; Mauri, V.; Torre, M.; Auricchio, F. Impact of Graphene Reinforcement on Mechanical Properties of PLA 3D Printed Materials. In Proceedings of the 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar]
- Cicero, S.; Martínez-Mata, V.; Castanon-Jano, L.; Alonso-Estebanez, A.; Arroyo, B. Analysis of Notch Effect in the Fracture Behaviour of Additively Manufactured PLA and Graphene Reinforced PLA. Theor. Appl. Fract. Mech. 2021, 114, 103032. [Google Scholar] [CrossRef]
- Taylor, D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Elsevier: London, UK, 2007. [Google Scholar]
- Taylor, D. Predicting the Fracture Strength of Ceramic Materials Using the Theory of Critical Distances. Eng. Fract. Mech. 2004, 71, 2407–2416. [Google Scholar] [CrossRef]
- Cicero, S.; Madrazo, V.; Carrascal, I.A. Analysis of Notch Effect in PMMA Using the Theory of Critical Distances. Eng. Fract. Mech. 2012, 86, 56–72. [Google Scholar] [CrossRef]
- Negru, R.; Marsavina, L.; Voiconi, T.; Linul, E.; Filipescu, H.; Belgiu, G. Application of TCD for Brittle Fracture of Notched PUR Materials. Theor. Appl. Fract. Mech. 2015, 80, 87–95. [Google Scholar] [CrossRef]
- Cicero, S.; Madrazo, V.; Carrascal, I.A. On the Point Method Load-Bearing Capacity Predictions in Al7075-T651 Structural Components Containing Stress Risers. Eng. Fail. Anal. 2012, 26, 129–138. [Google Scholar] [CrossRef]
- Marsavina, L.; Sapora, A.; Susmel, L.; Taylor, D. The Application of the Theory of Critical Distances to Nonhomogeneous Materials. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1314–1329. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Susmel, L. On the Use of Length Scale Parameters to Assess the Static Strength of Notched 3D-Printed PLA. Frat. Ed Integrità Strutt. 2017, 11, 252–259. [Google Scholar] [CrossRef]
- Shahbaz, S.; Ayatollahi, M.R.; Petru, M.; Torabi, A.R. U-Notch Fracture in Additively Manufactured ABS Specimens under Symmetric Three-Point Bending. Theor. Appl. Fract. Mech. 2022, 119, 103318. [Google Scholar] [CrossRef]
- Schmeier, G.E.C.; Tröger, C.; Kwon, Y.W.; Sachau, D. Predicting Failure of Additively Manufactured Specimens with Holes. Materials 2023, 16, 2293. [Google Scholar] [CrossRef] [PubMed]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014; Volume 08.01.
- ASTM D6068-10(2018); Standard Test Method for Determining J-R Curves of Plastic Materials. ASTM International: West Conshohocken, PA, USA, 2010; Volume 08.03.
- Neuber, H. Therory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material; Springer: Berlin/Heidelberg, Germany, 1958. [Google Scholar]
- Peterson, R.E. Notch Sensitivity. In Metal fatigue; Sines, G., Waisman, J.L., Eds.; McGraw Hill: New York, NY, USA, 1959; pp. 293–306. [Google Scholar]
- Lazzarin, P.; Zambardi, R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 2001, 112, 275–298. [Google Scholar] [CrossRef]
- Cicero, S.; Arrieta, S.; Sánchez, M.; Castanon-Jano, L. Analysis of Additively Manufactured Notched PLA Plates Using Failure Assessment Diagrams. Theor. Appl. Fract. Mech. 2023, 125, 103926. [Google Scholar] [CrossRef]
Material | E (MPa) | σy (MPa) | σu (MPa) | εu (%) | Kmat (MPa·m1/2) |
---|---|---|---|---|---|
PLA | 2751 ± 406 | 35.3 ± 4.6 | 41.1 ± 5.7 | 2.6 ± 0.2 | 4.91 ± 0.25 |
PLA-Gr | 3972 ± 260 | 47.5 ± 1.4 | 49.0 ± 2.8 | 1.5 ± 0.2 | 7.20 ± 0.31 |
Notch Geometry | Specimen | a (mm) | W (mm) | ρ (mm) | B (mm) | PEXP (kN) | PPM (kN) | PPM/PEXP |
---|---|---|---|---|---|---|---|---|
U-notch | G201 | 30.60 | 60.51 | 0.86 | 4.85 | 3.87 | 4.96 | 1.28 |
G202 | 30.84 | 60.38 | 0.91 | 4.88 | 3.86 | 4.99 | 1.29 | |
G203 | 30.73 | 60.50 | 0.83 | 4.85 | 3.89 | 4.93 | 1.26 | |
G204 | 30.66 | 60.46 | 0.87 | 10.02 | 8.52 | 10.15 | 1.19 | |
G205 | 30.59 | 60.46 | 0.88 | 9.96 | 8.54 | 10.15 | 1.19 | |
G206 | 30.83 | 60.49 | 0.86 | 9.98 | 8.76 | 10.11 | 1.15 | |
G207 | 31.02 | 120.36 | 0.81 | 4.96 | 10.55 | 11.09 | 1.05 | |
G208 | 30.34 | 120.31 | 0.83 | 4.98 | 13.15 | 11.19 | 0.85 | |
G209 | 30.58 | 120.20 | 0.89 | 4.97 | 10.14 | 11.28 | 1.11 | |
G210 | 31.02 | 120.36 | 0.89 | 10.14 | 24.43 | 22.40 | 0.92 | |
G211 | 30.92 | 120.43 | 0.84 | 10.13 | 26.41 | 22.28 | 0.84 | |
G212 | 31.06 | 120.48 | 0.88 | 10.00 | 23.07 | 22.36 | 0.97 | |
G213 | 31.08 | 120.43 | 0.88 | 20.17 | 39.90 | 45.06 | 1.13 | |
G214 | 31.25 | 120.62 | 0.89 | 20.05 | 42.56 | 45.08 | 1.06 | |
G215 | 30.83 | 120.63 | 0.87 | 20.14 | 47.30 | 45.06 | 0.95 | |
G301 | 30.85 | 60.48 | 1.24 | 4.86 | 3.69 | 5.26 | 1.43 | |
G302 | 30.98 | 60.40 | 1.24 | 4.91 | 4.29 | 5.26 | 1.23 | |
G303 | 30.91 | 60.54 | 1.26 | 4.77 | 3.80 | 5.29 | 1.39 | |
G304 | 30.85 | 60.47 | 1.26 | 9.96 | 8.63 | 10.75 | 1.25 | |
G305 | 31.19 | 60.55 | 1.27 | 9.92 | 8.60 | 10.77 | 1.25 | |
G306 | 30.95 | 60.47 | 1.25 | 9.93 | 8.40 | 10.73 | 1.28 | |
G307 | 30.62 | 120.32 | 1.26 | 4.88 | 11.51 | 11.95 | 1.04 | |
G308 | 30.93 | 120.30 | 1.27 | 4.92 | 11.21 | 11.97 | 1.07 | |
G309 | 30.92 | 120.42 | 1.26 | 4.94 | 11.46 | 12.00 | 1.05 | |
G310 | 31.02 | 120.25 | 1.27 | 9.96 | 25.37 | 23.79 | 0.94 | |
G311 | 31.04 | 120.33 | 1.26 | 9.93 | 22.38 | 23.77 | 1.06 | |
G312 | 31.08 | 120.43 | 1.26 | 9.93 | 26.31 | 23.78 | 0.90 | |
V-notch | G401 | 27.03 | 60.56 | 1.25 | 4.76 | 4.27 | 5.40 | 1.26 |
G402 | 26.87 | 60.54 | 1.05 | 4.80 | 4.09 | 5.54 | 1.35 | |
G403 | 26.99 | 60.49 | 0.89 | 4.83 | 4.58 | 5.16 | 1.13 | |
G404 | 26.95 | 60.60 | 0.65 | 9.92 | 9.56 | 10.31 | 1.08 | |
G405 | 26.92 | 60.55 | 0.93 | 9.99 | 10.04 | 10.74 | 1.07 | |
G406 | 26.93 | 60.58 | 0.87 | 9.92 | 8.76 | 11.96 | 1.36 | |
G407 | 26.95 | 120.24 | 1.07 | 4.89 | 10.65 | 11.80 | 1.11 | |
G408 | 26.50 | 120.26 | 1.15 | 4.83 | 10.30 | 11.84 | 1.15 | |
G409 | 26.80 | 120.33 | 1.01 | 4.86 | 12.05 | 11.56 | 0.96 | |
G410 | 26.96 | 120.46 | 0.97 | 9.94 | 24.25 | 23.42 | 0.97 | |
G411 | 26.92 | 120.29 | 0.89 | 9.95 | 25.32 | 23.13 | 0.91 | |
G412 | 26.87 | 120.53 | 1.05 | 9.95 | 24.10 | 23.99 | 0.99 | |
Hole | G101 | 30.39 | 60.56 | 15.03 | 4.85 | 5.45 | 6.63 | 1.22 |
G102 | 30.15 | 60.36 | 14.99 | 4.94 | 5.18 | 6.64 | 1.28 | |
G103 | 30.23 | 60.45 | 15.04 | 4.83 | 5.55 | 6.61 | 1.19 | |
G104 | 30.18 | 60.46 | 14.83 | 10.04 | 11.95 | 13.15 | 1.10 | |
G105 | 30.12 | 60.58 | 14.83 | 9.99 | 11.38 | 13.11 | 1.15 | |
G106 | 30.17 | 60.53 | 14.87 | 10.02 | 11.45 | 13.13 | 1.14 | |
G107 | 30.22 | 120.28 | 14.99 | 4.86 | 15.07 | 17.62 | 1.17 | |
G108 | 30.20 | 120.35 | 14.92 | 4.94 | 14.62 | 17.70 | 1.21 | |
G109 | 30.26 | 120.37 | 15.04 | 4.93 | 14.01 | 17.69 | 1.26 | |
G110 | 30.14 | 120.34 | 14.93 | 9.98 | 32.28 | 34.82 | 1.08 | |
G111 | 30.01 | 120.23 | 14.99 | 9.90 | 32.23 | 34.92 | 1.08 | |
G112 | 29.90 | 120.26 | 15.01 | 9.90 | 32.04 | 34.93 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicero, S.; Sánchez, M.; Arrieta, S. Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method. Polymers 2023, 15, 3797. https://doi.org/10.3390/polym15183797
Cicero S, Sánchez M, Arrieta S. Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method. Polymers. 2023; 15(18):3797. https://doi.org/10.3390/polym15183797
Chicago/Turabian StyleCicero, Sergio, Marcos Sánchez, and Sergio Arrieta. 2023. "Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method" Polymers 15, no. 18: 3797. https://doi.org/10.3390/polym15183797
APA StyleCicero, S., Sánchez, M., & Arrieta, S. (2023). Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method. Polymers, 15(18), 3797. https://doi.org/10.3390/polym15183797