Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Thermal Aging Procedure
2.3. Mechanical Testing
2.3.1. Mechanical Properties
2.3.2. Surface Morphology
3. Results
3.1. Tensile Properties
3.2. Failure Analysis
3.3. Flexural Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallucci, R.R.; Patel, B.R. Poly(butylene terephthalate). In Modern Olyesters; Scheirs, J., Long, T., Eds.; Wiley: Chichester, UK, 2003; pp. 293–321. [Google Scholar]
- Zhang, J. Study of poly(trimethylene terephthalate) as an engineering thermoplastics material. J. Appl. Polym. Sci. 2004, 91, 1657–1666. [Google Scholar] [CrossRef]
- Klimkeit, B.; Nadot, Y.; Castagnet, S.; Nadot-Martin, C.; Dumas, C.; Bergamo, S.; Sonsino, C.M.; Büter, A. Multiaxial fatigue life assessment for reinforced polymers. Int. J. Fatigue 2011, 33, 766–780. [Google Scholar] [CrossRef]
- Bergeret, A.; Ferry, L.; Ienny, P. Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym. Degrad. Stab. 2009, 94, 1315–1324. [Google Scholar] [CrossRef]
- Brehme, S.; Köppl, T.; Schartel, B.; Altstädt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e-Polymers 2014, 14, 193–208. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos. Part A Appl. Sci. Manuf. 2011, 42, 794–800. [Google Scholar] [CrossRef]
- Radusch, H.-J. Poly(butylene terephthalate). In Handbook of Thermoplastic Polyesters, 1st ed.; Fakirov, S., Ed.; Wiley: Chichester, UK, 2002; pp. 389–419. [Google Scholar]
- Cheng, S.Z.D.; Pan, R.; Wunderlich, B. Thermal analysis of poly(butylene terephthalate) for heat capacity, rigid-amorphous content, and transition behavior. Die Makromol. Chem. 1988, 189, 2443–2458. [Google Scholar] [CrossRef]
- Pyda, M.; Nowak-Pyda, E.; Heeg, J.; Huth, H.; Minakov, A.A.; Di Lorenzo, M.L.; Schick, C.; Wunderlich, B. Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J. Polym. Sci. B Polym. Phys. 2006, 44, 1364–1377. [Google Scholar] [CrossRef]
- Johnson, T. The Many Uses of PBT Plastics, Thougtco. 11 August 2019. Available online: https://www.thoughtco.com/what-are-pbt-plastics-820360 (accessed on 31 March 2020).
- Complete Guide on Polybutylene Terephthalate (PBT), Omnexus. 2020. Available online: https://omnexus.specialchem.com/selection-guide/polybutylene-terephthalate-pbt-plastic (accessed on 31 March 2020).
- Loyer, C.; Régnier, G.; Duval, V.; Ould, Y.; Richaud, E. PBT plasticity loss induced by oxidative and hydrolysis ageing. Polym. Degrad. Stab. 2020, 181, 109368. [Google Scholar] [CrossRef]
- Troeger, C.; Bens, A.; Bermes, G.; Klemmer, R.; Lenz, J.; Irsen, S. Ageing of acrylate-based resins for stereolithography: Thermal and humidity ageing behaviour studies. Rapid Prototyp. J. 2008, 14, 305–317. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Chen, J.; Deng, L.; Mao, C.; Zhou, X. Study on thermal aging properties of PBT energetic elastomer, Propellants, Explosives. Pyrotechnics 2023, 48, e202200233. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Zhou, K.; Yang, J.; Li, G. Crystal structure-flashover performance correlation in polybutylene terephthalate: Insights into the mechanism. J. Polym. Sci. 2023. [Google Scholar] [CrossRef]
- Souilem, S.; Doulache, N.; Khemici, M.W.; Gourari, A. TSDC study of electrical aging of polybutylene terephthalate (PBT). IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 791–796. [Google Scholar] [CrossRef]
- Souilem, S.; Doulache, N.; Khemici, M.W.; Khemici, M.W.; Gourari, A. TSDC and DSC Study of Effects of Physical Aging on Polybutylene Terephthalate (PBT). Int. J. Polym. Anal. Charact. 2014, 19, 175–188. [Google Scholar] [CrossRef]
- Wen, B.; Zheng, X. Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos. Sci. Technol. 2019, 174, 68–75. [Google Scholar] [CrossRef]
- Chiu, H.-T.; Huang, J.-K.; Huang, J.-H. Characterization of recycled polycarbonate/polybutylene terephthalate blends. J. Chin. Inst. Eng. Trans. Chin. Inst. Eng. Ser. A 2019, 42, 544–549. [Google Scholar] [CrossRef]
- Hoeks, T.; Goossens, J.; Vermeulen, H.; Shaikh, A.A.G. Improved chemical resistance of transparent bisphenol A polycarbonate materials. Polym. Eng. Sci. 2022, 62, 1377–1385. [Google Scholar] [CrossRef]
- Bardash, L.V.; Fainleib, A.M.; Grigoryeva, O.P.; Boiteux, G. Nanocomposites based on polybutylene terephthalate synthesized from cyclic oligomers of butylene terephthalate and multiwalled carbon nanotubes. J. Nano- Electron. Phys. 2015, 7, 01018. [Google Scholar]
- Zhang, D.; He, M.; He, W.; Zhou, Y.; Qin, S.; Yu, J. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO. Materials 2017, 10, 500. [Google Scholar] [CrossRef]
- Hashima, K.; Usui, K.; Fu, L.; Inoue, T.; Fujimoto, K.-I.; Segawa, K.; Abe, T.; Kimura, H. Super-Ductile PBT Alloy With Excellent Heat Resistance. Polym. Eng. Sci. 2008, 48, 1207–1213. [Google Scholar] [CrossRef]
- Sanchez, E.M.S. Ageing of PC/PBT Blend: Mechanical Properties; Sae Technical Paper Series, 2005-01-4044; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Borukaev, T.A.; Kozlov, G.V.; Mashukov, N.I.; Mikitaev, A.K. Mechanisms of thermo-oxidative degradation of modified polybutylene terephthalate. Plast. Massy 2002, 9, 26–29. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Silberschmidt, V.V. Failure behaviour of short-fibre-reinforced PBT composites: Effect of strain rate. Eng. Fail. Anal. 2019, 105, 466–476. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, N.S. Effects of thermal shock fatigue on short glass fiber-reinforced PBT composites embedded by thermally conductive particles. J. Mech. Sci. Technol. 2015, 29, 4665–4670. [Google Scholar] [CrossRef]
- Stoklasek, P.; Hylova, L.; Manas, D.; Manas, M.; Gajzlerova, L.; Mizera, A. Local mechanical properties of irradiated cross-linked filled poly (butylene terephthalate) (PBT). Mater. Tehnol. 2018, 52, 35–37. [Google Scholar] [CrossRef]
- Abdo, D.; Gleadall, A.; Silberschmidt, V.V. Damage and damping of short-glass-fibre-reinforced PBT composites under dynamic conditions: Effect of matrix behaviour. Compos. Struct. 2019, 226, 111286. [Google Scholar] [CrossRef]
- Khadse, N.; Ruckdashel, R.; Macajoux, S.; Sun, H.; Park, J.H. Temperature Responsive PBT Bicomponent Fibers for Dynamic Thermal Insulation. Polymers 2022, 14, 2757. [Google Scholar] [CrossRef] [PubMed]
- Kosinski, J.A.; Gualtieri, J.G.; Ballato, A. Thermoelastic Coefficients of Alpha Quartz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 502–507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Deng, J.; Nie, S.; Lan, Z.; Xu, Z. Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites. Polymers 2023, 15, 3798. https://doi.org/10.3390/polym15183798
Xu X, Deng J, Nie S, Lan Z, Xu Z. Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites. Polymers. 2023; 15(18):3798. https://doi.org/10.3390/polym15183798
Chicago/Turabian StyleXu, Xiuqi, Jiangang Deng, Siyu Nie, Zhenbo Lan, and Zhuolin Xu. 2023. "Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites" Polymers 15, no. 18: 3798. https://doi.org/10.3390/polym15183798
APA StyleXu, X., Deng, J., Nie, S., Lan, Z., & Xu, Z. (2023). Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites. Polymers, 15(18), 3798. https://doi.org/10.3390/polym15183798