A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile—Butadiene Rubber with Varied Contents of Acrylonitrile
Abstract
:1. Introduction
2. Models and Methods
2.1. MD Simulations
2.2. Datasets
2.3. Identifying the Correlation Parameters of AR
3. Results and Discussions
3.1. Mechanical Properties
3.2. Tribological Properties
3.3. RFR Model Results
3.4. Test and Verification of the Hypothesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, M.-X.; Peng, X.-D.; Meng, X.-K.; Zheng, J.-P.; Zhu, M.-H. Fretting wear behavior of acrylonitrile–butadiene rubber (NBR) for mechanical seal applications. Tribol. Int. 2016, 93, 419–428. [Google Scholar] [CrossRef]
- Brostow, W.; Kovačevic, V.; Vrsaljko, D.; Whitworth, J. Tribology of polymers and polymer-based composites. J. Mater. Educ. 2010, 35, 273–290. [Google Scholar]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Yuan, C.; Guo, Z.; Tao, W.; Dong, C.; Bai, X. Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys. Wear 2017, 384–385, 185–191. [Google Scholar] [CrossRef]
- Friedrich, K.; Chang, L.; Haupert, F. Current and future applications of polymer composites in the field of tribology. In Composite Materials: A Vision for the Future; Springer: Berlin/Heidelberg, Germany, 2011; pp. 129–167. [Google Scholar]
- Al, N.M.; Antonescu, N.N.; Dinita, A.; Morosanu, M. Tribological Characterization of Some Elastomers Used at Progressive Cavity and Piston Pumps. MATEC Web Conf. 2020, 318, 01016. [Google Scholar]
- Li, Y.; Wang, Q.; Wang, T.; Pan, G. Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J. Mater. Sci. 2011, 47, 730–738. [Google Scholar] [CrossRef]
- Degrange, J.-M.; Thomine, M.; Kapsa, P.; Pelletier, J.; Chazeau, L.; Vigier, G.; Dudragne, G.; Guerbé, L. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application. Wear 2005, 259, 684–692. [Google Scholar] [CrossRef]
- Dong, C.L.; Yuan, C.Q.; Bai, X.Q.; Yang, Y.; Yan, X.P. Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions. Wear 2015, 332–333, 1012–1020. [Google Scholar] [CrossRef]
- George, E.; Joy, J.; Anas, S. Acrylonitrile-based polymer/graphene nanocomposites: A review. Polym. Compos. 2021, 42, 4961–4980. [Google Scholar] [CrossRef]
- Maroufkhani, M.; Katbab, A.; Liu, W.; Zhang, J. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties. Polymer 2017, 115, 37–44. [Google Scholar] [CrossRef]
- Maroufkhani, M.; Katbab, A.; Zhang, J. Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym. Test. 2018, 65, 313–321. [Google Scholar] [CrossRef]
- Nie, R.; Wang, S.; Song, S. Abrasive Slurry Erosion Behavior of Nitrile-Butadiene Rubber with Different Acrylonitrile Contents. Mater. Sci. 2019, 26, 71–76. [Google Scholar] [CrossRef]
- Saba, N.; Tahir, P.M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Likozar, B.; Major, Z. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation. Appl. Surf. Sci. 2010, 257, 565–573. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, L.Q.; Tian, M. Mechanical and tribological properties of acrylonitrile–butadiene rubber filled with graphite and carbon black. Mater. Des. 2012, 39, 450–457. [Google Scholar] [CrossRef]
- Yunlong, L.; Quan, W.; Shijie, W. A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B 2018, 160, 348–361. [Google Scholar]
- Yuan, Q.; Li, Y.; Wang, S.; Cui, J.; He, E. Studies on effect of butadiene microstructure on physical and mechanical properties of nitrile rubber by molecular dynamics simulation. China Synth. Ind. Rubber 2022, 45, 95–99. [Google Scholar]
- Chukov, D.; Stepashkin, A.; Maksimkin, A.; Tcherdyntsev, V.; Kaloshkin, S.; Kuskov, K.; Bugakov, V. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B Eng. 2015, 76, 79–88. [Google Scholar] [CrossRef]
- Samyn, P.; Schoukens, G. Thermochemical sliding interactions of short carbon fiber polyimide composites at high pv-conditions. Mater. Chem. Phys. 2009, 115, 185–195. [Google Scholar] [CrossRef]
- Ma, J.; Qi, X.; Zhao, Y.; Dong, Y.; Song, L.; Zhang, Q.; Yang, Y. Polyimide/mesoporous silica nanocomposites: Characterization of mechanical and thermal properties and tribochemistry in dry sliding condition. Mater. Des. 2016, 108, 538–550. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Wang, S.; Li, Y. A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functionalized graphene sheets: Molecular dynamics simulations. Polym. Compos. 2021, 42, 205–219. [Google Scholar] [CrossRef]
- Karuth, A.; Alesadi, A.; Xia, W.; Rasulev, B. Predicting glass transition of amorphous polymers by application of cheminformatics and molecular dynamics simulations. Polymer 2021, 218, 123495. [Google Scholar] [CrossRef]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Li, Y.; Chan, T.W.; Zhang, L.; Wu, S. Effect of acrylonitrile content on compatibility and damping properties of hindered phenol AO-60/nitrile-butadiene rubber composites: Molecular dynamics simulation. RSC Adv. 2014, 4, 48472–48479. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wang, Q.; Xing, M. Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber)/carbon nanotube composites. Compos. Part B Eng. 2016, 97, 62–67. [Google Scholar] [CrossRef]
- Yunlong, L.; Shijie, W.; Enqiu, H. The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon 2016, 106, 106–169. [Google Scholar]
- Hernández, M.; Bernal, M.d.M.; Verdejo, R.; Ezquerra, T.A.; López-Manchado, M.A. Overall performance of natural rubber/graphene nanocomposites. Compos. Sci. Technol. 2012, 73, 40–46. [Google Scholar] [CrossRef]
- Liu, F.; Hu, N.; Zhang, J.; Atobe, S.; Weng, S.; Ning, H.; Liu, Y.; Wu, L.; Zhao, Y.; Mo, F.; et al. The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Adv. 2016, 6, 66658–66664. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, H.F.; Xiang, Y.; Yang, C.; Wang, C.M.; Zhang, Y.Y. Effect of Covalent Functionalization on Thermal Transport across Graphene–Polymer Interfaces. J. Phys. Chem. C 2015, 119, 12731–12738. [Google Scholar] [CrossRef]
- Suhua, Y.L.Z. Theory and Practice of Molecular Dynamics Simulation; Science Press: Beijing, China, 2013. [Google Scholar]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Saha, S.; Bhowmick, A.K. An Insight into molecular structure and properties of flexible amorphous polymers: A molecular dynamics simulation approach. J. Appl. Polym. Sci. 2019, 136, 47457. [Google Scholar] [CrossRef]
- Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W.R.; Brédas, J.-L. Characterization of the Interface Dipole at Organic/Metal Interfaces. J. Am. Chem. Soc. 2002, 124, 8131–8141. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Zhao, H.; Burkhart, C.; Brinson, L.C.; Chen, W. A Transfer Learning Approach for Microstructure Reconstruction and Structure-property Predictions. Sci. Rep. 2018, 8, 13461. [Google Scholar] [CrossRef]
- Mitra, S.; Ahmad, A.; Biswas, S.; Das, A.K. A machine learning approach to predict the structural and magnetic properties of Heusler alloy families. Comput. Mater. Sci. 2023, 216, 111836. [Google Scholar] [CrossRef]
- Scornet, E.; Biau, G.; Vert, J.-P. Consistency of random forests. Ann. Stat. 2015, 43, 1716–1741. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Ulrike, G. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar]
- Lovatti, B.P.; Nascimento, M.H.; Neto, C.; Castro, E.V.; Filgueiras, P.R. Use of Random forest in the identification of important variables. Microchem. J. 2019, 145, 1129–1134. [Google Scholar] [CrossRef]
- Qingzhi, Y. Modern Rubber Technology; China Petrochemical Press: Beijing, China, 1997. [Google Scholar]
- Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Hans, C.A. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 2008, 72, 2384–2393. [Google Scholar]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Subramaniyan, A.K.; Sun, C.T. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 2008, 45, 4340–4346. [Google Scholar] [CrossRef]
- Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). By Woldemar Voigt. Pp. xxiv + 964, with 213 text-figures and 1 table. (Leipzig and Berlin: B. G. Teubner. 1910. Price 30 marks.). Mineral. Mag. J. Mineral. Soc. 1912, 16, 253. [Google Scholar] [CrossRef]
- Reuss, A.J.Z.A.M.M. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Steinle-Neumann, G.; Stixrude, L.; Cohen, R.E. First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B 1999, 60, 791–799. [Google Scholar] [CrossRef]
- Rigby, D.; Sun, H.; Eichinger, B. Computer simulations of poly (ethylene oxide): Force field, pvt diagram and cyclization behaviour. Polym. Int. 1997, 44, 311–330. [Google Scholar] [CrossRef]
- Herrera, J.C. Equation of motion in classical electrodynamics. Phys. Rev. D 1977, 15, 492. [Google Scholar] [CrossRef]
- A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-Validation and the Repeated Learning-Testing Methods. Biometrika 1989, 76, 503–514. [CrossRef]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Iohara, K.I.; Imada, K.; Takayanagi, M. Determination of Mean Square Displacements of Polyethylene Molecules in Crystal Lattice. Polym. J. 1972, 3, 357–364. [Google Scholar] [CrossRef]
- Zhi, Q.C.; De Guo, W.; Qiong, Z. The Effect of Acrylonitrile Content on the Abrasion Behavior of Unfilled Nitrile Rubber. Adv. Mater. Res. 2014, 2954, 884–885. [Google Scholar]
- Maple, J.R.; Dinur, U.; Hagler, A.T. Derivation of Force-Fields for Molecular Mechanics and Dynamics from Abinitio Energy Surfaces. Proc. Natl. Acad. Sci. USA 1988, 85, 5350–5354. [Google Scholar] [CrossRef] [PubMed]
Item | Acrylonitrile and Butadiene Allocation Ratio | ACN Content | Chain Length (Å) | Number of Elements in Single Chain | Number of Total Atoms | |||
---|---|---|---|---|---|---|---|---|
C | H | N | Double Bond | |||||
ACN20 | 1:4 | 19.70% | 84.33 | 76 | 110 | 4 | 16 | 4180 |
ACN30 | 3:7 | 29.61% | 80.96 | 74 | 104 | 6 | 14 | 4048 |
ACN40 | 2:3 | 39.55% | 75.66 | 72 | 98 | 8 | 12 | 3916 |
ACN50 | 1:1 | 49.53% | 71.74 | 70 | 92 | 10 | 10 | 3784 |
Feature Module | The Name of Feature Parameters | |||
---|---|---|---|---|
Structural parameters | ACN Content | Number of C | Number of H | Number of N |
Mechanical properties | E | G | B | |
Friction parameters | FN | Ff | AR | |
Environmental variables | Temperature | Pressure | Loading | Velocity |
Energy parameters | (Hamiltonian) | (Total valence energy) | (Non-bond energy) | (Total cross terms energy) |
Total kinetic energy | Bond energy | Van der Waals energy | Bend–Bend energy | |
(Total potential energy) | Angle energy | Electrostatic energy | Bend–Torsion–Bend energy | |
Torsion energy | Torsion–Bend–Bend energy | |||
Inversion energy | Torsion–Stretch energy | |||
Stretch–Bend–Stretch energy | ||||
Stretch–Torsion–Stretch energy | ||||
Stretch–Stretch energy |
System | Young’s Modulus (GPa) | Increase Percentage (%) | Bulk Modulus (GPa) | Increase Percentage (%) | Shear Modulus (GPa) | Increase Percentage (%) |
---|---|---|---|---|---|---|
ACN20 | 3.05 | 0.00 | 2.95 | 0.00 | 1.25 | 0.00 |
ACN30 | 3.32 | 8.85 | 2.83 | −4.07 | 1.33 | 6.40 |
ACN40 | 3.77 | 23.61 | 3.27 | 10.85 | 1.52 | 21.60 |
ACN50 | 3.80 | 24.59 | 3.39 | 14.92 | 1.42 | 13.60 |
ACN30 Item | The Number of ACN Consecutive Units | Binding Energy (kcal/mol) | Free Volume (Å3) | ||
---|---|---|---|---|---|
1 ACN | 2 ACN | 3 ACN | |||
1211 (ACN30) | 4 | 1 | 0 | 192.70 | 6972 |
2121 | 2 | 2 | 0 | 192.40 | 7049 |
2130 | 1 | 1 | 1 | 190.55 | 7254 |
3111 | 3 | 0 | 1 | 193.73 | 6655 |
The VI Ranking | RFR Model 1 | RFR Model 2 | RFR Model 3 | RFR Model 4 | RFR Model 5 | RFR Model 6 | RFR Model 7 | RFR Model 8 |
---|---|---|---|---|---|---|---|---|
1 | BTB energy (62.6%) | BTB energy (33.2%) | BTB energy (41.9%) | BTB energy (26.7%) | BTB energy (37.2%) | BTB energy (33.1%) | BTB energy (51.9%) | BTB energy (41.9%) |
2 | FN (7.5%) | TBB energy (17.1%) | FN (7%) | TBB energy (13.2%) | Ff (9.1%) | Ff (10.5%) | TS energy (6.9%) | FN (7%) |
3 | Temperature (6.1%) | Temperature (8%) | TBB energy (6.8%) | FN (11.9%) | Temperature (8.1%) | TBB energy (10.1%) | Ff (6.3%) | TBB energy (6.8%) |
4 | TBB energy (3.1%) | Ff (5.9%) | Ff (6.4%) | Ff (8.6%) | FN (6.6%) | FN (6.4%) | Temperature (4.9%) | Ff (6.4%) |
5 | Ff (2.3%) | FN (5.3%) | STS energy (5.3%) | Temperature (4.4%) | TBB energy (6.5%) | TS energy (5.9%) | FN (4.8%) | STS energy (5.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Li, Y.; Wang, S.; He, E.; Yang, B.; Nie, R. A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile—Butadiene Rubber with Varied Contents of Acrylonitrile. Polymers 2023, 15, 3799. https://doi.org/10.3390/polym15183799
Yuan Q, Li Y, Wang S, He E, Yang B, Nie R. A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile—Butadiene Rubber with Varied Contents of Acrylonitrile. Polymers. 2023; 15(18):3799. https://doi.org/10.3390/polym15183799
Chicago/Turabian StyleYuan, Quan, Yunlong Li, Shijie Wang, Enqiu He, Bin Yang, and Rui Nie. 2023. "A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile—Butadiene Rubber with Varied Contents of Acrylonitrile" Polymers 15, no. 18: 3799. https://doi.org/10.3390/polym15183799
APA StyleYuan, Q., Li, Y., Wang, S., He, E., Yang, B., & Nie, R. (2023). A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile—Butadiene Rubber with Varied Contents of Acrylonitrile. Polymers, 15(18), 3799. https://doi.org/10.3390/polym15183799