Fracture Resistance of Fiber-Reinforced Composite Restorations: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria, Exclusion Criteria and Eligibility
2.2. Search Strategy
2.2.1. Sources of Information and Search Terms
2.2.2. Study Screening and Selection
2.2.3. Study Data
2.3. Risk of Bias of Each Individual In Vitro Trial
2.4. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Selection and Flow Diagram
3.2. Quality Assessment of the Included In Vitro Trials
3.3. Study Quantitative Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gaeta, C.; Marruganti, C.; Mignosa, E.; Franciosi, G.; Ferrari, E.; Grandini, S. Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis. Dent. J. 2021, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Vetromilla, B.M.; Opdam, N.J.; Leida, F.L.; Sarkis-Onofre, R.; Demarco, F.F.; Van der Loo, M.P.J.; Cenci, M.S.; Pereira-Cenci, T. Treatment options for large posterior restorations: A systematic review and network meta-analysis. J. Am. Dent. Assoc. 2020, 151, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.H.; Chang, H.S.; Min, K.S.; Lee, Y.; Cho, H.W.; Bae, J.M. Effect of the number of residual walls on fracture resistances, failure patterns, and photoelasticity of simulated premolars restored with or without fiber-reinforced composite posts. J. Endod. 2010, 36, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Lawson, N.C. Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. J. Esthet. Restor. Dent. 2021, 33, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Rodolfo, B.; Collares, K.; Correa, M.B.; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.; Moraes, R.R. Clinical performance of posterior resin composite restorations after up to 33 years. Dent. Mater. 2022, 38, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.; Keulemans, F.; Säilynoja, E.; Vallittu, P.K.; Garoushi, S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent. Mater. 2018, 34, 598–606. [Google Scholar] [CrossRef]
- Chai, H. On the fracture behavior of molar teeth with MOD cavity preparation. J. Mech. Behav. Biomed. Mater. 2023, 140, 105747. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Vincze-Bandi, E.; Volom, A.; Braunitzer, G.; Szabó, P.B.; Garoushi, S.; Forster, A. Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities. Polymers 2021, 13, 2040. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M. Fiber-Reinforced Composites for Dental Applications. BioMed Res. Int. 2018, 2018, 4734986. [Google Scholar] [CrossRef]
- Vallittu, P.K. High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dent. Mater. 2015, 31, 1–7. [Google Scholar] [CrossRef]
- Vallittu, P.K. An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater. Odontol. Scand. 2018, 4, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Vallittu, P.K.; Özcan, M.; Lassila, L.V.J.; Gandini, P.; Sfondrini, M.F. Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. BioMed Res. Int. 2018, 2018, 1498901. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.H.; Shaik, S.; Hameed, M.S.; Al-Saleh, S.; AlHamdan, E.M.; Alshahrani, A.; Alqahtani, A.; Albaqawi, A.H.; Vohra, F.; Abduljabbar, T. Influence of Dental Glass Fibers and Orthopedic Mesh on the Failure Loads of Polymethyl Methacrylate Denture Base Resin. Polymers 2021, 13, 2793. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liu, T.; Lee, W.; Fei, X.; Jiang, G.; Jiang, Y. Fracture resistance of palatal cusps defective premolars restored with polyethylene fiber and composite resin. Dent. Mater. J 2016, 35, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Singla, M.; Miglani, S.; Sharma, V.; Kohli, S. Effect of polyethylene fiber reinforcement on marginal adaptation of composite resin in Class II preparations. Gen. Dent. 2018, 66, e6–e10. [Google Scholar]
- Deliperi, S.; Alleman, D.; Rudo, D. Stress-reduced Direct Composites for the Restoration of Structurally Compromised Teeth: Fiber Design According to the ‘Wallpapering’ Technique. Oper. Dent. 2017, 42, 233–243. [Google Scholar] [CrossRef]
- Mangoush, E.; Säilynoja, E.; Prinssi, R.; Lassila, L.; Vallittu, P.; Garoushi, S. Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature. J. Clin. Exp. Dent. 2017, 9, 1408–1417. [Google Scholar] [CrossRef]
- Mangoush, E.; Garoushi, S.; Lassila, L.; Vallittu, P.K.; Säilynoja, E. Effect of Fiber Reinforcement Type on the Performance of Large Posterior Restorations: A Review of In Vitro Studies. Polymers 2021, 13, 3682. [Google Scholar] [CrossRef]
- Jakab, A.; Volom, A.; Sáry, T.; Vincze-Bandi, E.; Braunitzer, G.; Alleman, D.; Garoushi, S.; Fráter, M. Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities—An Updated Literature Review. Polymers 2022, 14, 1438. [Google Scholar] [CrossRef] [PubMed]
- Albar, N.; Khayat, W. Fracture Load of Mesio–Occluso–Distal Composite Restorations Performed with Different Reinforcement Techniques: An In Vitro Study. Polymers 2023, 15, 1358. [Google Scholar] [CrossRef]
- Preethikaharshini, J.; Naresh, K.; Rajeshkumar, G.; Arumugaprabu, V.; Khan, M.A.; Khan, K.A. Review of advanced techniques for manufacturing biocomposites: Non-destructive evaluation and artificial intelligence-assisted modeling. J. Mater. Sci. 2022, 57, 16091–16146. [Google Scholar] [CrossRef]
- Joffre, T.; Isaksson, P.; Dumont, P.J.J.; Du Roscoat, S.R.; Sticko, S.; Orgéas, L.; Gamstedt, E.K. A Method to Measure Moisture Induced Swelling Properties of a Single Wood Cell. Exp. Mech. 2016, 56, 723–733. [Google Scholar] [CrossRef]
- Strohrmann, K.; Hajek, M. Bilinear approach to tensile properties of flax composites in finite element analyses. J. Mater. Sci. 2019, 54, 1409–1421. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Equator Network. Available online: https://www.equator-network.org/reporting-guidelines/prisma/ (accessed on 14 July 2023).
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J. Prosthet. Dent. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Mzali, S.; Elwasli, F.; Mkaddem, A.; Mezlini, S. A micromechanical scratch model to investigate wear mechanisms in UD-GFRP composites. Mech. Ind. 2018, 19, 305. [Google Scholar] [CrossRef]
- Din, I.U.; Panier, S.; Hao, P.; Franz, G.; Bijwe, J.; Hui, L. Finite element modeling of indentation and adhesive wear in sliding of carbon fiber reinforced thermoplastic polymer against metallic counterpart. Tribol. Int. 2019, 135, 200–212. [Google Scholar] [CrossRef]
- Agrawal, V.S.; Shah, A.; Kapoor, S. Effect of fiber orientation and placement on fracture resistance of large class II mesio-occluso-distal cavities in maxillary premolars: An in vitro study. J. Conserv. Dent. 2022, 25, 122–127. [Google Scholar] [CrossRef]
- Albar, N.H.M.; Khayat, W.F. Evaluation of Fracture Strength of Fiber-Reinforced Direct Composite Resin Restorations: An In Vitro Study. Polymers 2022, 14, 4339. [Google Scholar] [CrossRef]
- Balkaya, H.; Topçuoğlu, H.S.; Demirbuga, S.; Kafdağ, Ö.; Topçuoğlu, G. Effect of different coronal restorations on the fracture resistance of teeth with simulated regenerative endodontic treatment: An in vitro study. Aust. Endod. J. 2022, 48, 331–337. [Google Scholar] [CrossRef]
- Özüdoğru, S.; Tosun, G. Evaluation of Microleakage and Fatigue Behaviour of Several Fiber Application Techniques in Composite Restorations. Ann. Dent. Spec. 2022, 10, 60–66. [Google Scholar] [CrossRef]
- Tentardini Bainy, P.; Melara, R.; Burnett Junior, L.H.; Fontoura de Melo, T.A. Effect of glass fiber on the restorative procedure in relation to fracture strength of endodontically treated molars. G. Ital. Endodon. 2021, 35, 178–186. [Google Scholar] [CrossRef]
- Shafiei, F.; Dehghanian, P.; Ghaderi, N.; Doozandeh, M. Fracture resistance of endodontically treated premolars restored with bulk-fill composite resins: The effect of fiber reinforcement. Dent. Res. J. 2021, 18, 1–8. [Google Scholar]
- Shah, S.; Shilpa-Jain, D.P.; Velmurugan, N.; Sooriaprakas, C.; Krithikadatta, J. Performance of fibre reinforced composite as a post-endodontic restoration on different endodontic cavity designs- an in-vitro study. J. Mech. Behav. Biomed. Mater. 2020, 104, 103650. [Google Scholar] [CrossRef] [PubMed]
- Bahari, M.; Mohammadi, N.; Kimyai, S.; Kahnamoui, M.A.; Vahedpour, H.; Torkani MA, M.; Oskoee, A.S. Effect of Different Fiber Reinforcement Strategies on the Fracture Strength of Composite Resin Restored Endodontically Treated Premolars. Pesqui. Bras. Odontopediatr. Clín. Integr. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Eliguzeloglu Dalkiliç, E.; Kazak, M.; Hisarbeyli, D.; Fildisi, M.A.; Donmez, N.; Deniz Arısu, H. Can Fiber Application Affect the Fracture Strength of Endodontically Treated Teeth Restored with a Low Viscosity Bulk-Fill Composite? BioMed Res. Int. 2019, 2019, 3126931. [Google Scholar] [CrossRef]
- Jalan, R.; Merwade, S.; Kumar, K.N.; Naik, S.; Brigit, B.; Jain, N. A Comparative Study to Evaluate the Fracture Resistance of Endodontically Treated Maxillary Premolar Teeth with MOD Cavity Preparation, Restored with Composite Resin and Different Positions of Polyethylene Fibre Insertion-An In Vitro Study. J. Adv. Med. Dent. Scie. Res. 2019, 7, 111–114. [Google Scholar] [CrossRef]
- Mergulhão, V.; de Mendonça, L.; de Albuquerque, M.; Braz, R. Fracture Resistance of Endodontically Treated Maxillary Premolars Restored with Different Methods. Oper. Dent. 2019, 44, E1–E11. [Google Scholar] [CrossRef]
- Sáry, T.; Garoushi, S.; Braunitzer, G.; Alleman, D.; Volom, A.; Fráter, M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques—An in vitro study. J. Mech. Behav. Biomed. Mater. 2019, 98, 348–356. [Google Scholar] [CrossRef]
- Göktürk, H.; Karaarslan, E.Ş.; Tekin, E.; Hologlu, B.; Sarıkaya, I. The effect of the different restorations on fracture resistance of root-filled premolars. BMC Oral Health 2018, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Hshad, M.E.; Dalkılıç, E.E.; Ozturk, G.C.; Dogruer, I.; Koray, F. Influence of Different Restoration Techniques on Fracture Resistance of Root-filled Teeth: In Vitro Investigation. Oper. Dent. 2018, 43, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.; Ramachandran, A.; Alfadley, A.; Baskaradoss, J.K. Ex vivo fracture resistance of teeth restored with glass and fiberreinforced composite resin. J. Mech. Behav. Biomed. Mater. 2018, 82, 235–238. [Google Scholar] [CrossRef]
- Eapen, A.M.; Amirtharaj, L.V.; Sanjeev, K.; Mahalaxmi, S. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study. J. Endod. 2017, 43, 499–1504. [Google Scholar] [CrossRef] [PubMed]
- Garlapati, T.G.; Krithikadatta, J.; Natanasabapathy, V. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material-An in vitro study. J. Prosthodont. Res. 2017, 61, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Tekce, N.; Pala, K.; Tuncer, S.; Demirci, M.; Serim, M.E. Influence of polymerisation method and type of fibre on fracture strength of endodontically treated teeth. Aust. Endod. J. 2017, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ozsevik, A.S.; Yildirim, C.; Aydin, U.; Culha, E.; Surmelioglu, D. Effect of fibre-reinforced composite on the fracture resistance of endodontically treated teeth. Aust. Endod. J. 2015, 42, 82–87. [Google Scholar] [CrossRef]
- Rahman, H.; Singh, S.; Chandra, A.; Chandra, R.; Tripathi, S. Evaluation of fracture resistance of endodontically treated teeth restored with composite resin along with fibre insertion in different positions in vitro. Aust. Endod. J. 2016, 42, 60–65. [Google Scholar] [CrossRef]
- Kemaloglu, H.; Kaval, M.E.; Turkun, M.; Kurt, S.M. Effect of novel restoration techniques on the fracture resistance of teeth treated endodontically: An in vitro study. Dent. Mater. J. 2015, 34, 618–622. [Google Scholar] [CrossRef]
- Karzoun, W.; Abdulkarim, A.; Samran, A.; Kern, M. Fracture Strength of Endodontically Treated Maxillary Premolars Supported by a Horizontal Glass Fiber Post: An In Vitro Study. J. Endod. 2015, 41, 907–912. [Google Scholar] [CrossRef]
- Khan, S.I.; Anupama, R.; Deepalakshmi, M.; Kumar, K.S. Effect of two different types of fibers on the fracture resistance of endodontically treated molars restored with composite resin. J. Adhes. Dent. 2013, 15, 167–171. [Google Scholar] [CrossRef]
- Singh, S.; Chandra, A.; Tikku, A.P.; Verma, P. A comparative evaluation of different restorative technique using polyethylene fibre in reinforcing the root-filled teeth: An in vitro study. J. Res. Dent. 2013, 1, 60–65. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Neto, M.A.; Roseiro, L.; Messias, A.; Falacho, R.I.; Palma, P.J.; Amaro, A.M. Influence of Cavity Geometry on the Fracture Strength of Dental Restorations: Finite Element Study. Appl. Sci. 2021, 11, 4218. [Google Scholar] [CrossRef]
- Friedrich, K.; Fakirov, S.; Zhang, Z. Polymer Composites: From Nano-to-Macro-Scale; Springer: New York, NY, USA, 2005; pp. 113–115. [Google Scholar] [CrossRef]
- Belli, S.; Erdemir, A.; Ozcopur, M.; Eskitascioglu, G. The effect of fibre insertion on fracture resistance of root filled molar teeth with MOD preparations restored with composite. Int. Endod. J. 2005, 38, 73–80. [Google Scholar] [CrossRef]
- Ayad, M.F.; Maghrabi, A.A.; García-Godoy, F. Resin composite polyethylene fiber reinforcement: Effect on fracture resistance of weakened marginal ridges. Am. J. Dent. 2010, 23, 133–136. [Google Scholar] [PubMed]
- Belli, S.; Erdemir, A.; Yildirim, C. Reinforcement effect of polyethylene fibre in root-filled teeth: Comparison of two restorationtechniques. Int. Endod. J. 2006, 39, 136–142. [Google Scholar] [CrossRef]
- Beltrão, M.C.; Spohr, A.M.; Oshima, H.M.; Mota, E.G.; Burnett, L.H., Jr. Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post. Am. J. Dent. 2009, 22, 9–13. [Google Scholar]
- Oskoee, P.A.; Ajami, A.A.; Navimipour, E.J.; Oskoee, S.S.; Sadjadi, J. The effect of three composite fiber insertion techniques on fracture resistance of root-filled teeth. J. Endod. 2009, 35, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 2013, 29, 835–841. [Google Scholar] [CrossRef]
- Forster, A.; Braunitzer, G.; Tóth, M.; Szabó, B.P.; Fráter, M. In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions: Fracture Resistance of Adhesively Restored MOD Cavities. J. Prosthodont. 2019, 28, e325–e331. [Google Scholar] [CrossRef]
- Sadr, A.; Bakhtiari, B.; Hayashi, J.; Luong, M.N.; Chen, Y.W.; Chyz, G.; Chan, D.; Tagami, J. Effects of fiber reinforcement on adaptation and bond strength of a bulk-fill composite in deep preparations. Dent. Mater. 2020, 36, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Forniglia, A.; Tempesta, R.M.; Comba, A.; Saratti, C.M.; Pasqualini, D.; Alovisi, M.; Berutti, E. Effects of fiber-glassreinforced composite restorations on fracture resistance and failure mode of endodontically treated molars. J. Dent. 2016, 53, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Safwat, E.M.; Khater, A.G.A.; Abd-Elsatar, A.G.; Khater, G.A. Glass fiber-reinforced composites in dentistry. Bull. Natl. Res. Cent. 2021, 45, 190. [Google Scholar] [CrossRef]
- Krithikadatta, J.; Gopikrishna, V.; Datta, M. CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J. Conserv. Dent. 2014, 17, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Hammel, C.; Pandis, N.; Pieper, D.; Faggion, C.M., Jr. Methodological assessment of systematic reviews of in-vitro dental studies. BMC Med. Res. Methodol. 2022, 22, 110. [Google Scholar] [CrossRef] [PubMed]
PubMed | ||
---|---|---|
(Molar [Title/Abstract]) OR (Premolar [Title/Abstract]) OR (Posterior teeth [Title/Abstract]) | (Fiber reinforcement [Title/Abstract]) OR (Fiber-reinforced composite dentistry [Title/Abstract]) OR (Fiber-reinforced restoration [Title/Abstract]) OR (Fiber- reinforced composite resin [Title/ Abstract]) OR (Fiber cavity reinforcement [Title/Abstract]) OR (Polyethylene fiber [Title/Abstract]) OR (Glass fiber [Title/Abstract]) | (Fracture resistance [Title/ Abstract]) OR (Fracture strength [Title/Abstract]) OR (Fracture resistance fiber-reinforcement composite [Title/Abstract]) OR (in vitro [Title/Abstract]) |
Web of Science | ||
topic: Molar* OR Bicuspid* OR Premolar* OR Posterior teeth* | topic: Fiber reinforcement* OR Fiber-reinforced composite* OR Fiber- reinforced restoration* OR Fiber-reinforced composite resin* OR Fiber cavity reinforcement* OR Polyethylene fiber* OR Fiberglass* | topic: Fracture resistance* OR Fracture strength* OR fracture resistance fiber-reinforced composite* OR in vitro* |
Google Scholar | ||
In title: (Molar OR Premolar OR Posterior teeth) | In title: (Fiber reinforcement OR Fiber-reinforced composite OR Fiber-reinforced restoration OR Fiber cavity reinforcement OR Polyethylene fiber OR Fiberglass) | In title: (Fracture resistance OR Fracture strength OR in vitro) |
First Author, Year | Experimental Group | Control Group | Fracture Resistance Evaluation | Main Conclusion | |
---|---|---|---|---|---|
Type of Fibers | Application Technique | Mean (SD) (1) (Newtons) | |||
Agrawal et al., 2022 [29] | Polyethylene fiber Ribbond® (Ribbond Inc., Seattle, WA, USA) | Gingival and pulpal floor; pulpal floor; vertical on gingival and pulpal floor; fiber chips | Non-fiber- reinforcement composite restorations | Experimental Groups*—G2: 1288.8 (186.9); G3: 976.0 (142.3); G4: 942.3 (151.5); G5: 876.3 (165.8)—Control Groups*—G1: 588.4 (69.6); G6: 833.0 (201.1) | Horizontal orientation of fiber on both pulpal and gingival floor of MOD cavities gives the highest fracture resistance |
Albar et al., 2022 [30] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Axial wall of the proximal cavity; gingival floor of the proximal cavity; axial wall and pulpal/gingival floor of the proximal cavity | Non-fiber- reinforcement composite restorations | Experimental Groups*—G2: 422.1 (14.9); G3: 409.0 (15.9); G4: 446.2 (12.9)—Control Group*—G1: 390.2 (10.4) | The reinforcement of direct composite resin restorations with polyethylene fibers increased the fracture resistance of the restorations in comparison with non-reinforced restorations |
Balkaya et al., 2022 [31] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) unrestored cavity; negative control (NC) healthy teeth | Experimental Groups*—G7: 601.0 (133.0); G8: 658.0 (116.0) Control Groups*—NC: 952.0 (111.0); PC: 219.0 (48.0); non-fiber-reinforcement composite: G3: 440.0 (102.0); G4: 447.0 (101.0); G5: 459.0 (126.0); G6: 464.0 (115.0) | Ribbond in combination with composite resin enhanced the fracture resistance of teeth |
Özüdoğru et al., 2022 [32] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal and lingual walls and fiber placed in circumferential way | Healthy teeth (HT) | Experimental Groups*—G3: 2602.1 (126.2); G4: 2805.7 (125.9) Control Groups*—HT: 2710.4 (171.2); non-fiber- reinforcement composite: G2: 2312.5 (112.0) | Polyethylene fiber reinforcement did not affect the fracture resistance of composite resin restorations |
Tentardini Bainy et al., 2021 [33] | Fiberglass post Reforpost® (Angelus, Los Angeles, CA, USA) Fiberglass Interlig® (Angelus) | Horizontal transfixation on buccal and palatal walls; Placed in circumferential way | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G4: 2256.0 (289.2); G5: 2493.0 (364.0) Control Groups*—PC: 3563.0 (780.7); NC: 1001.0 (237.6); non-fiber-reinforcement composite: G3: 1689.0 (280.7) | The fiberglass, regardless of composition, increases the fracture resistance of endodontically treated teeth |
Shafiei et al., 2021 [34] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) unrestored cavity; negative control (NC) healthy teeth | Experimental Groups*—G6: 858.0 (215.0); G7: 529.0 (124.0); G8: 802.0 (201.0)—Control Groups*—NC: 1204.0 (252.0); PC: 352.0 (143.0); non-fiber-reinforcement composite: G3: 579.0 (114.0); G4: 596.0 (138.0); G5: 624.0 (182.0) | The effect of fiber on fracture resistance depended on the type of composite resin; the highest reinforcing effect was obtained in the conventional composite resin and fiber |
Shah et al., 2020 [35] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G4: 797.9 (17.7); G5: 834.7 (26.3); G6: 843.9 (39.8)—Control Groups*—PC: 1207.4 (90.6); NC: 669.6 (15.0); non-fiber-reinforcement composite: G1: 879.9 (36.3); G2: 873.6 (38.3); G3: 922.6 (23.3); G7: 697.7 (34.9); G8: 705.4 (18.5); G9: 713.0 (11.6) | Fiber-reinforced composites when used in different cavity configurations of endodontically treated premolar yielded similar results |
Bahari et al., 2019 [36] | Fiberglass Interlig® (Angelus) Fiberglass post Reforpost® (Angelus) Fiberglass post and fiberglass | Buccal and lingual walls; Horizontal transfixation on buccal and palatal walls; Horizontal on buccal and palatal walls and occlusal position | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G4: 1122.1 (231.6); G5: 1023.3 (295.5); G6: 1097.5 (256.0)—Control Groups*—PC: 1073.6 (245.1); NC: 461.8 (136.2); non-fiber-reinforcement composite: G3: 1103.5 (378.4) | Fiber reinforcement has no additional reinforcing effect on fracture strength of composite-resin-restored endodontically treated maxillary premolars |
Eliguzeloglu Dalkiliç et al., 2019 [37] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls; fiber in base of cavity and occlusal position | Healthy teeth (HT) | Experimental Groups*—G4: 818.9 (166.1); G5: 821.9 (226.3); G7: 803.3 (78.1); G8: 832.0 (209.2)—Control Groups*—HT1: 1351.4 (238.8); HT2: 1210.0 (318.5); non-fiber-reinforcement composite: G3: 736.8 (116.4); G6: 788.7 (210.5) | Fiber insertion with different techniques did not increase the fracture strength of teeth restored with bulk-fill composites |
Jalan et al., 2019 [38] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls; fiber on the occlusal surface | Healthy teeth (HT) | Experimental Groups*—G3: 1114.5 (429.9); G4: 725.9 (118.7) Control Groups*—HT: 914.3 (695.2); non-fiber— reinforcement composite: G2: 984.6 (403.4) | Fiber reinforcement in base of cavity might be an alternate technique for a permanent restoration after root canal treatment |
Mergulhão et al., 2019 [39] | Fiberglass post White Post DC™ (FGM, Santa Catarina, Brazil) | Horizontal on the buccal and palatal walls | Healthy teeth (HT) | Experimental Group*—G3: 934.5 (233.6)—Control Groups* HT: 949.6 (331.5); non-fiber-reinforcement composite: G2: 999.6 (352.50); G4: 771.0 (147.4) | Endodontically treated maxillary premolars restored with conventional composite resin with or without horizontal fiber post, bulk-fill composite or ceramic inlay showed fracture resistance like that of sound teeth |
Sáry et al., 2019 [40] | Polyethylene fiber Ribbond® (Ribbond Inc.) Fiberglass EverStick NET® (GC Corporation, Tokyo, Japan) | Buccal/lingual in base of cavity; on the top; as an occlusal splint; circumferentially or transcoronally Buccal/lingual in base of cavity; on the top; as an occlusal splint or circumferentially | Healthy teeth (HT) | Experimental Groups*—G3: 1122.2 (440.0); G4: 1408.6 (314.5); G5: 1925.6 (792.6); G6: 2067.3 (535.8); G7: 1834.4 (578.5); G8: 2022.0 (771.4); G9: 2129.2 (629.7); G10: 1906.9 (538.0); G11: 2484.8 (682.9)—Control Groups*—HT: 2266.3 (601.1); non-fiber-reinforcement composite: G1: 1629.4 (503.1); G2: 1746.2 (467.5) | Incorporating polyethylene or a combination of short and bidirectional glass fibers in certain positions in direct restorations seems to be able to restore the fracture resistance of sound molar teeth |
Göktürk et al., 2018 [41] | Fiberglass Interlig® (Angelus) | Buccal and lingual walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Group*—G4: 367.1 (82.9)—Control Groups*—PC: 742.0 (245.4); NC: 192.1 (59.3); non-fiber- reinforcement composite: G3: 355.8 (103.9) | All the restoration techniques increased the fracture resistance of teeth; there were no significant differences between the fracture resistance values of the groups that underwent different restorations |
Hshad et al., 2018 [42] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Healthy teeth (HT) | Experimental Group*—G3: 1951.6 (330.9) Control Groups*—HT: 2156.7 (628.0); non-fiber- reinforcement composite: G2: 1315.8 (352.3); G4: 1445.3 (506.1) | Polyethylene fiber considerably increases the fracture resistance of mandibular premolar teeth with MOD cavities restored with composite |
Khan et al., 2018 [43] | Polyethylene fiber Ribbond® (Ribbond Inc.); Fiberglass EverStick® (GC Corporation); Dentapreg® (Advanced Dental Materials); Bioctris® (Bio Composants Medicaux, Saint-Blaise-du-Buis, France) | Buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G4: 959.2 (128.6); G5: 1433.1 (98.5); G6: 979.1 (124.2); G7: 1480.20 (102.9)—Control Groups*— PC: 1677.0 (155.1); NC: 352.5 (32.7); non-fiber- reinforcement composite: G3: 775.1 (101.9) | All the groups restored with fiber displayed higher fracture resistance than the group restored with only composite resin; E glass fibers demonstrated highest fracture resistance and hence can be preferred over other fiber types |
Eapen et al., 2017 [44] | Fiberglass Interlig® (Angelus) | Buccal, lingual and pulpal walls | Positive control (PC) unrestored cavity; negative control (NC) healthy teeth | Experimental Group*—G5: 404.1 (94.2)—Control Groups*—PC: 233.8 (26.4); NC: 842.5 (294.4); non-fiber- reinforcement composite: G3: 434.5 (174.3); G4: 465.13 (159.3); G6: 712.8 (79.8) | Short-fiber-reinforced composite can be used as a direct core buildup material that can effectively resist heavy occlusal forces against fracture and may reinforce the remaining tooth structure |
Garlapati et al., 2017 [45] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) Unrestored cavity | Experimental Group*—G4: 1716.7 (199.5)—Control Groups*—PC: 1568.40 (221.7); NC: 891.00 (50.1); non-fiber- reinforcement composite: G3: 1418.3 (168.7); G5: 1994.80 (254.2) | Endodontically treated teeth restored with EverX Posterior fiber-reinforced composite showed superior fracture resistance |
Tekçe et al., 2017 [46] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) Healthy teeth Negative control (NC) unrestored cavity | Experimental Groups*—G1: 2254.1 (324.8); G2 2228.6 (409.3); G3: 2007.40(495.6); G4: 1938.2 (199.7)—Control Groups*—PC: 2910.3 (361.0); NC: 719.30 (108.6); non-fiber- reinforcement composite: G5: 2142.9 (411.5) | Ribbond- or short-fiber-reinforced composites modestly increased the fracture resistance of unfilled teeth; polyethylene-fiber- reinforced composite groups displayed similar fracture resistance results to those of the EverX Posterior group |
Ozsevik et al., 2016 [47] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Group*—G4: 1958.0 (362.9)—Control Groups*—PC: 2859.5 (551.2); NC: 318.9 (108.6); non-fiber- reinforcement composite: G3: 1489.5 (505.0); G5: 2550.7 (586.1) | Fiber-reinforced composite under composite restorations resulted in fracture resistance similar to that of intact teeth; furthermore, it reinforced root-filled teeth more than composite alone and Ribbond and composite restorations |
Rahman et al., 2016 [48] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal/lingual on the occlusal surface; buccal/lingual in base of cavity; buccal/lingual in base of cavity and fiber on the occlusal surface | Non-fiber- reinforcement composite restorations | Experimental Groups*—G2: 1236.8 (83.4); G2: 879.3 (98.2); G2: 1482.0 (74.5)—Control Group*—G1: 653.4 (74.0) | Polyethylene fiber inserted over or under the restoration significantly increased the fracture resistance of the root-canal-treated teeth and maximum fracture resistance was observed with dual-fiber technique |
Kemaloglu et al., 2015 [49] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Buccal, lingual and pulpal walls | Non-fiber- reinforcement composite restorations | Experimental Group*—G2: 919.8 (47.6)—Control Groups*—G1: 823.3 (34.0); G3: 889.4 (72.8); G4: 817.1 (60.8) | Fiber-reinforcement improved the fracture resistance of teeth with large MOD cavities treated endodontically |
Karzoun et al., 2015 [50] | Fiberglass post White Post DC™ (FGM) | Fiber post through the buccal and lingual walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G4: 961.3 (245.2); G5: 656.0 (139.4)—Control Groups*—PC: 994.5 (147.3); NC: 411.8 (104.0); non-fiber-reinforcement composite: G3: 482.1 (72.9) | Using a horizontal fiberglass post to restore endodontically treated MOD cavities increased the fracture resistance of the restoration tooth significantly |
Khan et al., 2013 [51] | Polyethylene fiber Ribbond® (Ribbond Inc.); Fiberglass Vectris® (Ivoclar, Tokyo, Japan) | Buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G5: 958.6 (162.7); G6: 913.2 (151.3) Control Groups*—PC: 1598.8 (168.3); NC: 393.7 (24.4); non-fiber-reinforcement composite: G3: 729.3 (168.0); G4: 699.7 (114.5) | Polyethylene and fiberglass under MOD composite restorations significantly increased fracture strength with no statistical difference between the two groups |
Singh et al., 2013 [52] | Polyethylene fiber Ribbond® (Ribbond Inc.) | Fiber strip in bucco-lingually oriented groove on the restoration’s occlusal surface; fiber on the buccal, lingual and pulpal walls | Positive control (PC) healthy teeth; negative control (NC) unrestored cavity | Experimental Groups*—G3: 1236.8 (83.4); G4: 879.3 (98.2)—Control Groups*—PC: 1674.0 (99.7); NC: 379.6 (34.9); non-fiber-reinforcement composite: G2: 653.4 (74.0) | Polyethylene fiber inserted over or under the restoration significantly increased the fracture strength of the root-canal-treated teeth |
First Author, Year | 1. Clearly Stated Aims/Objectives | 2. Sample Size Calculation | 3. Explanation of Sampling Technique | 4. Comparison Group | 5. Methodology | 6. Operator Details | 7. Randomization | 8. Method of Measurement of Outcome | 9. Outcome Assessor Details | 10. Blinding | 11. Statistical Analysis | 12. Presentation of Results | Risk of Bias * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agrawal et al., 2022 [29] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Albar et al., 2022 [30] | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Balkaya et al., 2022 [31] | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Özüdoğru et al., 2022 [32] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Tentardini Bainy et al., 2021 [33] | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Shafiei et al., 2021 [34] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Shah et al., 2020 [35] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Bahari et al., 2019 [36] | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Eliguzeloglu Dalkiliç et al., 2019 [37] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Jalan et al., 2019 [38] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | Medium |
Mergulhão et al., 2019 [39] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Sáry et al., 2019 [40] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Göktürk et al., 2018 [41] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Hshad et al., 2018 [42] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Khan et al., 2018 [43] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Eapen et al., 2017 [44] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Garlapati et al., 2017 [45] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | Medium |
Tekçe et al., 2017 [46] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Ozsevik et al., 2016 [47] | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Rahman et al., 2016 [48] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | Medium |
Kemaloglu et al., 2015 [49] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | Medium |
Karzoun et al., 2015 [50] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | Medium |
Khan et al., 2013 [51] | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | Medium |
Singh et al., 2013 [52] | 2 | 0 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | High |
Experimental (Exp) and Control (C) Groups | Overall Fracture Resistance (N) | p-Value (3) | ||
---|---|---|---|---|
n (1) | Median Value | IQR (2) Values | ||
Exp: Fiber-reinforced composite restoration | 55 | 976.0 | 832.0–1834.4 | ˂0.001 |
C: Healthy teeth | 20 | 1459.9 | 962.6–2238.9 | |
C: Non-fiber-reinforced composite restoration | 45 | 771.0 | 592.2–1209.6 | |
C: Unrestored cavity preparation | 14 | 386.6 | 297.6–682.0 |
Pairwise Comparisons of Experimental and Each Control Groups | ||
---|---|---|
Experimental Group Sample 1 (1) | Control Groups Sample 2 (1) | p-Value (2) |
Fiber-reinforced composite restorations | Healthy teeth | 0.048 |
Non-fiber-reinforced composite restorations | 0.008 | |
Unrestored cavity preparations | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar, L.B.; Pereira da Silva, L.; Manarte-Monteiro, P. Fracture Resistance of Fiber-Reinforced Composite Restorations: A Systematic Review and Meta-Analysis. Polymers 2023, 15, 3802. https://doi.org/10.3390/polym15183802
Escobar LB, Pereira da Silva L, Manarte-Monteiro P. Fracture Resistance of Fiber-Reinforced Composite Restorations: A Systematic Review and Meta-Analysis. Polymers. 2023; 15(18):3802. https://doi.org/10.3390/polym15183802
Chicago/Turabian StyleEscobar, Lorena Bogado, Lígia Pereira da Silva, and Patrícia Manarte-Monteiro. 2023. "Fracture Resistance of Fiber-Reinforced Composite Restorations: A Systematic Review and Meta-Analysis" Polymers 15, no. 18: 3802. https://doi.org/10.3390/polym15183802
APA StyleEscobar, L. B., Pereira da Silva, L., & Manarte-Monteiro, P. (2023). Fracture Resistance of Fiber-Reinforced Composite Restorations: A Systematic Review and Meta-Analysis. Polymers, 15(18), 3802. https://doi.org/10.3390/polym15183802