Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Injection Molding Process
2.2. Process Optimization
2.3. Materials
2.4. Experimental Methodolofy
2.4.1. Injection Molding
2.4.2. Materials Analysis
2.4.3. Scheme of Experiment and Processing
3. Taguchi and Other Statistical Techniques
3.1. Taguchi Method [41]
3.1.1. Orthogonal Table
3.1.2. Signal-to-Noise (S/N) Ratio
3.1.3. Main Effects Analysis (MEA)
3.1.4. ANOVA
- I.
- Degree of freedom (DOF)
- (1)
- degrees of freedom for each factor
- (2)
- total number of degrees of freedom
- (3)
- error degrees of freedom
- II.
- Total sum of squares (SST), the total variation
- III.
- The sum of squares of each factor (SS), the variation of each factor. if a factor has p levels, and each level has m observations, then the sum of squares is:
- IV.
- Error sum of squares (SSerror):
- V.
- Mean square, MS, the variance:
- VI.
- Error mean square (MSE)
- VII.
- F-ratio indicates the relationship between the factor effect and the error variation. When the F value is larger, it means that the factor has a more important influence on the system, and it is used to arrange the important order of the factors.
- VIII.
- Pure sum of square (SS′)
- IX.
- Percent contribution (ρ), the relative ability to reduce variation for factors.
3.1.5. Confidence Interval (CI)
3.2. PCA [36]
3.3. Data Envelopment Analysis (DEA) [40]
3.3.1. Charnes, Cooper and Rhodes (CCR) Input-Oriented Model
3.3.2. Cross-Efficiency Analysis Model
3.4. Materials Analysis
3.5. Injection Molding Process Parameter Selection
4. Experiment results
4.1. Experimental Data and Corresponding S/N Ratios
4.2. Single Quality Optimization Analysis
4.2.1. Tensile Strength Test Data Analysis
- (1)
- MEA
- (2)
- ANOVA
4.2.2. Hardness Test Data Analysis
- (1)
- MEA
- (2)
- ANOVA
4.2.3. Impact Strength Test Data Analysis
- (1)
- MEA
- (2)
- ANOVA
4.2.4. Bending Strength Experiment Data Analysis
- (1)
- MEA
- (2)
- ANOVA
4.3. Multiple-Quality Optimization Analysis
4.3.1. PCA
4.3.2. DEA
5. Discussions
5.1. S/N Ratio Additive Model
- (1)
- PCA
- (2)
- DEA
5.2. S/N Ratio Additive Model Comparison
5.3. Confirmation Experiment and Comparison
- (1)
- The S/N ratio of the confirmation experiment of the two methods are similar to those predicted by the S/N ratio additive model.
- (2)
- The average confirmation experiment data of DEA: tensile strength 95.03775 MPa, hardness 86.52 Shore D, impact strength 4.4408 J/cm2, bending strength 119.889 MPa.
- (3)
- The average confirmation experiment data of PCA: tensile strength 94.03601 MPa, hardness 86.28 Shore D, impact strength 3.285046 J/cm2, bending strength 98.21989 MPa.
- (4)
- The Taguchi method combined with DEA, the obtained optimal combination of process parameters has the characteristics of better and multi-quality considerations.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaac, C.W. Crashworthiness performance of green composite energy absorbing structure with embedded sensing device providing cleaner environment for sustainable maintenance. Sustain. Mater. Technol. 2020, 25, 00196. [Google Scholar] [CrossRef]
- Çavdar, A.D.; Boran, S. Dogal liflerin otomotiv sanayinde kullanımı. Kast. Univ. J. For. Fac. 2016, 16, 253–263. [Google Scholar]
- Zhao, X.; Liu, J.; Li, J.; Liang, X.; Zhou, W.; Peng, S. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int. J. Biol. Macromol. 2022, 218, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Ashothamana, A.; Sudhab, J.; Senthilkumar, N. A comprehensive review on biodegradable polylactic acid polymer matrix composite material reinforced with synthetic and natural fiber. Mater. Today Proc. 2023, 80, 2829–2839. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916. [Google Scholar] [CrossRef]
- Jandas, P.J.; Mohanty, S.; Nayak, S.K. Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J. Clean. Prod. 2013, 52, 392–401. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Jang, J.; Im, H.G.; Lim, D.; Bae, B.S. Preparation of high-performance transparent glass-fiber reinforced composites based on refractive index-tunable epoxy-functionalized siloxane hybrid matrix. Compos. Sci. Technol. 2021, 201, 108527. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Al-Homoud, M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Li, B.; Wan, G.; Zhao, G.; Zhang, A. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int. J. Biol. Macromol. 2019, 129, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, Z.; Wang, Y.; Yang, B.; Wang, J.; Mu, W. PLA composites reinforced with rice residues or glass fiber—A review of mechanical properties, thermal properties, and biodegradation properties. J. Polym. Res. 2022, 29, 422. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 2019, 181, 121803. [Google Scholar] [CrossRef]
- Leu, Y.Y.; Mohd, Z.A.; Chow, W.S. Mechanical thermal and morphological properties of injection molded polylactic acid/sebs-g-mah/organo-montmorillonite nanocomposites. J. Appl. Polym. Sci. 2012, 124, 1200–1207. [Google Scholar] [CrossRef]
- Ma, P.; Wang, X.; Liu, B.; Li, Y.; Chen, S.; Zhang, Y.; Xu, G. Preparation and foaming extrusion behavior of polylactide/polybutylene ccinate/montmorillonoid nanocomposite. J. Cell. Plast. 2012, 48, 191–205. [Google Scholar] [CrossRef]
- Shen, L.H.; Yang, H.J.; Ying, J.; Qiao, F.; Peng, M. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. J. Mater. Sci. Mater. Med. 2009, 20, 2259–2263. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Jaszkiewicz, A.; Scherzer, D. Mechanical properties of pla composites with man-made cellulose and abaca fibres. Compos. Part A Appl. 2009, 40, 404–412. [Google Scholar] [CrossRef]
- An, S.O.; Lee, E.S.; Noh, S.L. A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries. J. Mater. Process. Technol. 1997, 68, 60–67. [Google Scholar] [CrossRef]
- Bigg, D.M. The impact behavior of thermoplastic sheet composites. J. Reinf. Plast. Compos. 1994, 13, 339–354. [Google Scholar] [CrossRef]
- Jaszkiewicz, A.A.; Bledzki, A.K.; Franciszczak, P. Improving the mechanical performance of pla composites with natural, man-made cellulose and glass fibers—A comparison to pp counterparts. Polimery 2013, 58, 435–442. [Google Scholar] [CrossRef]
- Durante, M.; Formisano, A.; Boccarusso, L.; Langella, A.; Carrino, L. Creep behaviour of polylactic acid reinforced by woven hemp fabric. Compos. Part B 2017, 124, 16–22. [Google Scholar] [CrossRef]
- Li, M.X.; Kim, S.H.; Choi, S.W.; Goda, K.; Lee, W.I. Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Compos. Part B 2016, 96, 248–254. [Google Scholar] [CrossRef]
- Luo, J.; Meng, X.; Gong, W.; Jiang, Z.; Xin, Z. Improving the stability and ductility of polylactic acid via phosphite functional polysilsesquioxane. RSC Adv. 2019, 9, 25151–25157. [Google Scholar] [CrossRef] [PubMed]
- Meinig, L.; Boldt, R.; Spoerer, Y.; Kuehnert, I.; Stommel, M. Correlation between processing parameters, morphology, and properties of injection-molded polylactid acid (PLA) specimens at different length scales. Polymers 2023, 15, 721. [Google Scholar] [CrossRef]
- Setyarini, P.H.; Anggarwati, M.P.; Wahyudi, S.; Sulistyarini, D.H. Injection Molding Characterization of PLA and Chitosan Mixtures for Biomaterial Applications. Adv. Sci. Technol. 2023, 122, 27–32. [Google Scholar]
- Mukras, S.M.; Omar, H.M.; Al-Mufadi, F.A. Experimental-based multi-objective optimization of injection molding process parameters. Arab. J. Sci. Eng. 2019, 44, 7653–7665. [Google Scholar] [CrossRef]
- Johnnaber, F. Injection Molding Machine: A Use’s Guide; Hanser Publication: Munich, Germany, 2008. [Google Scholar]
- Bozzelli, J.W.; Cardinal, J.; Fierens, B. Pressure Loss in Thin Wall Moldings; William Andrew Publishing: Norwich, NY, USA, 2001; pp. 121–126. [Google Scholar]
- Jansen, K.M.B.; Van Dijk, D.J.; Husselman, M.H. Effect of processing conditions on shrinkage in injection molding. Polym. Eng. Sci. 1998, 38, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Shokri, P.; Bhatnagar, N. Effect of the post-filling stage on fiber orientation at the mid-plane in injection molding of reinforced thermoplastics. Phys. Procedia 2012, 25, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, S.; Khan, Z.A.; Foong, S.H. Application of Taguchi method in the optimization of injection Moulding parameters for manufacturing products from plastic blend. Int. J. Eng. Technol. 2010, 2, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.F.J.; Su, T.L. Optimization of injection molding processing parameters for LCD light-guide plates. J. Mater. Eng. Perform. 2007, 16, 539–548. [Google Scholar] [CrossRef]
- Karna, S.K.; Singh, R.V.; Sahai, R. Application of Taguchi Method in Indian Industry. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 387–391. [Google Scholar]
- Liu, S.J.; Hsu, C.H.; Chang, C.Y. Parametric characterization of the thin-wall injection molding of thermoplastic composites. J. Reinf. Plast. Compos. 2002, 21, 1027–1041. [Google Scholar] [CrossRef]
- Ghani, J.A.; Choudhury, I.A.; Hassan, H.H. Application of Taguchi method in the optimization of end milling parameters. J. Mater. Process. Technol. 2004, 145, 84–92. [Google Scholar] [CrossRef]
- Su, C.T.; Tong, L.I. Multi-response robust design by principal component analysis. Total Qual. Manag. 1997, 8, 409–416. [Google Scholar] [CrossRef]
- Antony, J. Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal component analysis. Qual. Reliab. Eng. Int. 2000, 16, 3–8. [Google Scholar] [CrossRef]
- Shih, J.-S.; Tzeng, Y.-F.; Yang, J.-B. Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater. Des. 2011, 32, 1253–1261. [Google Scholar] [CrossRef]
- Jeyapaul, R.; Shahabudeen, P.; Krishnaiah, K. Simultaneous optimization of multi-response problems in the Taguchi method using genetic algorithm. Int. J. Adv. Manuf. Technol. 2006, 30, 9–10. [Google Scholar] [CrossRef]
- Al-Refaie, A.; Al-Tahat, M.D. Solving the multi-response problem in Taguchi method by benevolent formulation in DEA. J. Intell. Manuf. 2011, 22, 505–521. [Google Scholar] [CrossRef]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, Japan, 1986. [Google Scholar]
- Silkman, R.H. Measuring Efficiency: An Assessment of Data Envelopment Analysis; Jossey-Bass: Hoboken, NJ, USA, 1986. [Google Scholar]
- Kumar, A.J.; Prakash, M. Thermal properties of basalt/Cissus-quadrangularis hybrid fiber reinforced polylactic acid biomedical composites. J. Therm. Anal. Calorim. 2020, 141, 717–725. [Google Scholar] [CrossRef]
Type | GG-0010N | GG-0015N | GG-0020N | |
---|---|---|---|---|
Category | TY11512706 | TY11512707 | TY11512708 | |
Raw material properties | Ratio | Ratio | Ratio | |
Filling contents (%) | 10 | 15 | 20 | |
Mold shrinkage (%) | 0.08 | 0.07 | 0.055 | |
Melting point (°C) | 155 | 155 | 155 | |
Specific weight | 1.302 | 1.352 | 1.373 |
Factor | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Level | GF (%) | Melt Temperature (°C) | Injection Speed (mm/s) | Packing Pressure (MPa) | Packing Time (s) | Cololing Time (s) | |
1 | 10 | 175 | 40 | 50 | 0.5 | 10 | |
2 | 15 | 185 | 60 | 60 | 1 | 15 | |
3 | 20 | 195 | 80 | 70 | 1.5 | 20 |
Exp. No. | Tensile Strength | Shore Hardness | Impact Strength | Bending Strength | ||||
---|---|---|---|---|---|---|---|---|
Mean (Mpa) | S/N Ratio (db) | Mean (Shore D) | S/N Ratio (db) | Mean (Mpa) | S/N Ratio (db) | Mean (Mpa) | S/N Ratio (db) | |
1 | 73.52 | 37.32 | 83.52 | 38.43 | 2.84 | 9.05 | 66.81 | 36.49 |
2 | 79.38 | 37.99 | 85.36 | 38.62 | 3.82 | 11.64 | 73.57 | 37.33 |
3 | 74.35 | 37.42 | 84.16 | 38.50 | 3.30 | 10.36 | 69.94 | 36.89 |
4 | 89.81 | 39.06 | 85.32 | 38.62 | 3.31 | 10.41 | 81.85 | 38.26 |
5 | 79.97 | 38.05 | 85.08 | 38.59 | 2.72 | 8.65 | 104.78 | 40.40 |
6 | 81.27 | 38.19 | 85.8 | 38.66 | 2.67 | 8.47 | 94.10 | 39.46 |
7 | 90.01 | 39.08 | 86.64 | 38.75 | 3.00 | 9.51 | 114.29 | 41.15 |
8 | 94.58 | 39.51 | 85.52 | 38.64 | 3.43 | 10.64 | 89.02 | 38.98 |
9 | 90.93 | 39.17 | 85.28 | 38.61 | 3.22 | 10.09 | 113.04 | 41.06 |
10 | 74.18 | 37.40 | 84.96 | 38.58 | 3.41 | 10.56 | 76.23 | 37.63 |
11 | 84.20 | 38.50 | 83.6 | 38.44 | 3.68 | 11.29 | 65.02 | 36.25 |
12 | 75.22 | 37.52 | 84.2 | 38.50 | 2.65 | 8.45 | 66.95 | 36.51 |
13 | 76.84 | 37.71 | 85.16 | 38.60 | 2.42 | 7.59 | 93.94 | 39.45 |
14 | 86.97 | 38.78 | 85.44 | 38.63 | 3.13 | 9.90 | 85.10 | 38.59 |
15 | 88.53 | 38.94 | 85.12 | 38.60 | 3.08 | 9.77 | 102.68 | 40.22 |
16 | 90.59 | 39.13 | 85.56 | 38.64 | 3.59 | 11.06 | 94.10 | 39.46 |
17 | 91.77 | 39.25 | 86.24 | 38.71 | 3.13 | 9.90 | 105.74 | 40.47 |
18 | 88.04 | 38.89 | 85.88 | 38.67 | 3.43 | 10.67 | 117.27 | 41.38 |
Source of Variance | DOF | SS | MS | F-Ratio | SS′ | Contribution (%) |
---|---|---|---|---|---|---|
A | 2 | 6.574942 | 3.287471 | 78.8653 | 6.491573 | 69.43184 |
B | 2 | 0.536076 | 0.268038 | 6.430137 | 0.452706 | 4.842008 |
C | 2 | 0.758098 | 0.379049 | 9.093256 | 0.674729 | 7.216688 |
D | 2 | 0.834386 | 0.417193 | 10.00831 | 0.751016 | 8.032637 |
E | 2 | 0.326381 | 0.163191 | 3.91489 | 0.243012 | 2.599183 |
F | 2 | 0.111256 | 0.055628 | 1.334499 | 0.027887 | 0.29827 |
Error | 5 | 0.208423 | 0.041685 | - | 0.708639 | 7.579378 |
Combined error | 9 | 0.646061 | 0.071785 | - | 0.979538 | 10.47683 |
Total | 17 | 9.349562 | - | - | 9.349562 | 100% |
Source of Variance | DOF | SS | MS | F-Ratio | SS | Contribution (%) |
---|---|---|---|---|---|---|
A | 2 | 0.078381 | 0.03919 | 50.17795 | 0.076819 | 61.88925 |
B | 2 | 0.000645 | 0.000322 | 0.41269 | −0.00092 | −0.73912 |
C | 2 | 0.009879 | 0.004939 | 6.324327 | 0.008317 | 6.700536 |
D | 2 | 0.0000583 | 0.0000292 | 0.037343 | −0.0015 | −1.21148 |
E | 2 | 0.004601 | 0.0023 | 2.945448 | 0.003039 | 2.448299 |
F | 2 | 0.026654 | 0.013327 | 17.06346 | 0.025092 | 20.21547 |
Error | 5 | 0.003905 | 0.000781 | - | 0.013277 | 10.69704 |
Combined error | 11 | 0.009209 | 0.000837 | - | 0.013895 | 11.19475 |
Total | 17 | 0.124123 | - | - | 0.124123 | 100% |
Source of Variation | DOF | SS | MS | F-Ratio | SS′ | Contribution (%) |
---|---|---|---|---|---|---|
A | 2 | 5.194863 | 2.597431 | 20.26545 | 4.938522 | 24.29646 |
B | 2 | 1.806817 | 0.903408 | 7.048492 | 1.550476 | 7.628006 |
C | 2 | 1.988054 | 0.994027 | 7.755511 | 1.731713 | 8.519656 |
D | 2 | 2.013387 | 1.006693 | 7.854334 | 1.757046 | 8.644286 |
E | 2 | 7.435231 | 3.717616 | 29.00525 | 7.17889 | 35.31859 |
F | 2 | 1.246892 | 0.623446 | 4.864195 | 0.990551 | 4.873297 |
error | 5 | 0.640852 | 0.12817 | - | 2.178897 | 10.7197 |
combined error | 7 | 1.887744 | 0.269678 | - | 3.169448 | 15.593 |
Total | 17 | 20.3261 | - | - | 20.3261 | 100% |
Source of Variation | DOF | SS | MS | F-Ratio | SS′ | Contribution (%) |
---|---|---|---|---|---|---|
A | 2 | 40.49939 | 20.2497 | 109.8102 | 40.13058 | 79.54693 |
B | 2 | 1.217893 | 0.608946 | 3.302198 | 0.84908 | 1.683048 |
C | 2 | 2.333172 | 1.166586 | 6.326172 | 1.96436 | 3.893759 |
D | 2 | 2.307224 | 1.153612 | 6.255815 | 1.938411 | 3.842324 |
E | 2 | 0.960443 | 0.480222 | 2.604149 | 0.591631 | 1.172732 |
F | 2 | 2.208777 | 1.104389 | 5.988887 | 1.839965 | 3.647182 |
error | 5 | 0.922032 | 0.184406 | - | 3.134908 | 6.214022 |
combined error | 9 | 3.100368 | 0.344485 | - | 4.575619 | 9.069802 |
Toatl | 17 | 50.44894 | - | - | 50.44894 | 100% |
Item | Normalization | |||
---|---|---|---|---|
Exp. No. | Tensile Strength (db) | Hardness (db) | Impact Strength (db) | Bending Strength (db) |
1 | 0 | 0 | 0.360288 | 0.046529 |
2 | 0.305514 | 0.595101 | 1 | 0.209861 |
3 | 0.043814 | 0.211606 | 0.68312 | 0.124504 |
4 | 0.796652 | 0.583344 | 0.695165 | 0.39112 |
5 | 0.335628 | 0.506342 | 0.260825 | 0.80949 |
6 | 0.398977 | 0.734969 | 0.217705 | 0.626838 |
7 | 0.805877 | 1 | 0.474639 | 0.955724 |
8 | 1 | 0.646452 | 0.751809 | 0.532859 |
9 | 0.845459 | 0.570436 | 0.616277 | 0.937851 |
10 | 0.036197 | 0.46859 | 0.733954 | 0.269505 |
11 | 0.53995 | 0.029864 | 0.912518 | 0 |
12 | 0.092801 | 0.223351 | 0.212693 | 0.050202 |
13 | 0.177234 | 0.531425 | 0 | 0.624045 |
14 | 0.66961 | 0.621067 | 0.5699 | 0.456059 |
15 | 0.740098 | 0.519641 | 0.538667 | 0.77504 |
16 | 0.830143 | 0.656811 | 0.855435 | 0.625622 |
17 | 0.88272 | 0.874393 | 0.570041 | 0.823749 |
18 | 0.717439 | 0.760387 | 0.759501 | 1 |
Correlation Coefficient | Tensile Strength | Hardness | Impact Strength | Bending Strength |
---|---|---|---|---|
tensile strength | 1 | 0.637712 | 0.364163 | 0.631945 |
hardness | 0.637712 | 1 | 0.025061 | 0.804754 |
impact strength | 0.364163 | 0.025061 | 1 | −0.15557 |
bending strength | 0.631945 | 0.804754 | −0.15557 | 1 |
Principal Component | Eigenvalues | Variance (%) | Variance Accumulation (%) |
---|---|---|---|
1 | 2.3972 | 59.9315 | 59.9315 |
2 | 1.1729 | 29.32323 | 89.25473 |
3 | 0.2764 | 6.910173 | 96.1649 |
4 | 0.1534 | 3.835096 | 100 |
Principal Component Eigenvalue | Eigenvector | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
tensile strength | 0.3327 | 0.6983 | −0.3061 | 0.555 |
hardness | 0.4779 | −0.6381 | 0.1317 | 0.5891 |
impact strength | −0.2964 | −0.3228 | −0.8943 | 0.0906 |
bending strength | −0.7571 | 0.0304 | 0.2987 | 0.5803 |
PC No. | PC1 | PC2 | PC3 | PC4 | MPCI |
---|---|---|---|---|---|
1 | −0.14202 | −0.11489 | −0.30831 | 0.059643 | −0.13782 |
2 | −0.06924 | −0.48281 | −0.84676 | 0.732517 | −0.21349 |
3 | −0.18104 | −0.32116 | −0.55927 | 0.283114 | −0.23046 |
4 | 0.04166 | −0.02844 | −0.67189 | 1.075738 | 0.011456 |
5 | −0.33653 | −0.14831 | −0.02751 | 0.977937 | −0.20957 |
6 | −0.05513 | −0.2416 | −0.03279 | 1.037881 | −0.06634 |
7 | −0.11825 | −0.19952 | −0.25397 | 1.633971 | −0.08426 |
8 | 0.01538 | 0.059314 | −0.73414 | 1.313157 | 0.026238 |
9 | −0.33882 | 0.055965 | −0.45467 | 1.405343 | −0.16417 |
10 | −0.18560 | −0.50246 | −0.52524 | 0.519025 | −0.27496 |
11 | −0.07656 | 0.06343 | −0.97741 | 0.399939 | −0.07948 |
12 | 0.03657 | −0.14485 | −0.17421 | 0.231483 | −0.02372 |
13 | −0.15953 | −0.19637 | 0.20214 | 0.77356 | −0.10956 |
14 | 0.00539 | −0.09881 | −0.49661 | 1.053788 | −0.01965 |
15 | −0.25188 | 0.034907 | −0.40833 | 1.215434 | −0.12232 |
16 | −0.13713 | −0.09654 | −0.74575 | 1.288207 | −0.11262 |
17 | −0.08107 | −0.10051 | −0.41878 | 1.534682 | −0.04814 |
18 | −0.38013 | −0.19898 | −0.49999 | 1.495233 | −0.26337 |
Factor | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Level | |||||||
1 | −0.15999 | −0.11796 | −0.09008 | −0.10849 | −0.05989 | −0.11126 | |
2 | −0.08600 | −0.09068 | −0.15066 | −0.07241 | −0.15403 | −0.13492 | |
3 | −0.10772 | −0.14506 | −0.11297 | −0.17281 | −0.13979 | −0.10753 | |
Optimal combination | A2B2C1D2E1F3 |
DMUj | Input | Output | CCR Relative Efficiency | |||
---|---|---|---|---|---|---|
x1j | Tensile Strength (y1j) | Hardness (y2j) | Impact Strength (y3j) | Bending Strength (y4j) | EO | |
DMU1 | 1 | 73.52477 | 83.52 | 2.8476 | 66.81545 | 0.963989 |
DMU2 | 1 | 79.38108 | 85.36 | 3.828677 | 73.57561 | 1 |
DMU3 | 1 | 74.35877 | 84.16 | 3.3012 | 69.94087 | 0.977845 |
DMU4 | 1 | 89.81108 | 85.32 | 3.317569 | 81.85909 | 0.991989 |
DMU5 | 1 | 79.97769 | 85.08 | 2.720092 | 104.784 | 0.981994 |
DMU6 | 1 | 81.27175 | 85.8 | 2.672708 | 94.10377 | 0.990305 |
DMU7 | 1 | 90.01753 | 86.64 | 3.008923 | 114.2964 | 1 |
DMU8 | 1 | 94.58278 | 85.52 | 3.433446 | 89.02934 | 1 |
DMU9 | 1 | 90.93708 | 85.28 | 3.220646 | 113.0414 | 1 |
DMU10 | 1 | 74.18635 | 84.96 | 3.417077 | 76.23644 | 0.988585 |
DMU11 | 1 | 84.20733 | 83.6 | 3.680062 | 65.02789 | 0.991002 |
DMU12 | 1 | 75.22981 | 84.2 | 2.656123 | 66.95524 | 0.971837 |
DMU13 | 1 | 76.84382 | 85.16 | 2.421138 | 93.94801 | 0.982918 |
DMU14 | 1 | 86.97903 | 85.44 | 3.138369 | 85.10043 | 0.989086 |
DMU15 | 1 | 88.53637 | 85.12 | 3.089477 | 102.6813 | 0.985056 |
DMU16 | 1 | 90.59795 | 85.56 | 3.597569 | 94.10114 | 1 |
DMU17 | 1 | 91.77599 | 86.24 | 3.138585 | 105.7453 | 1 |
DMU18 | 1 | 88.04105 | 85.88 | 3.4328 | 117.2763 | 1 |
DMUj | Input | Output | |||
---|---|---|---|---|---|
v*1j | u*1j | u*2j | u*3j | u*4j | |
DMU1 | 1 | 0 | 0.011542 | 0 | 0 |
DMU2 | 1 | 0.0000462 | 0.010776 | 0.019273 | 0.0000372 |
DMU3 | 1 | 0 | 0.010948 | 0.017094 | 0 |
DMU4 | 1 | 0.000828 | 0.010068 | 0.017654 | 0 |
DMU5 | 1 | 0 | 0.011542 | 0 | 0 |
DMU6 | 1 | 0 | 0.011542 | 0 | 0 |
DMU7 | 1 | 0.003315 | 0.006394 | 0.021896 | 0.000715 |
DMU8 | 1 | 0.006234 | 0.001792 | 0.04055 | 0.001324 |
DMU9 | 1 | 0.005772 | 0.002066 | 0.046761 | 0.001311 |
DMU10 | 1 | 0 | 0.010948 | 0.017094 | 0 |
DMU11 | 1 | 0.003771 | 0 | 0.18301 | 0 |
DMU12 | 1 | 0 | 0.011542 | 0 | 0 |
DMU13 | 1 | 0 | 0.011542 | 0 | 0 |
DMU14 | 1 | 0.000208 | 0.010654 | 0.019339 | 0 |
DMU15 | 1 | 0.000208 | 0.010654 | 0.019339 | 0 |
DMU16 | 1 | 0.001158 | 0.009406 | 0.021217 | 0.000149 |
DMU17 | 1 | 0.003616 | 0.005963 | 0.02334 | 0.000762 |
DMU18 | 1 | 0.000841 | 0.009809 | 0.020768 | 0.000105 |
Factor | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Level | |||||||
1 | 5.3 | 9.0 | 9.8 | 9.2 | 7.5 | 8.0 | |
2 | 7.7 | 10.8 | 8.5 | 11.7 | 11.2 | 10.5 | |
3 | 15.5 | 8.7 | 10.2 | 7.7 | 9.8 | 10.0 | |
Optimal combination | A3B2C3D2E2F2 |
Best Combination | Tensile Strength | Hardness | Impact Strength | Bending Strength |
---|---|---|---|---|
A2 | 38.4606 | 38.62083 | 9.135085 | 39.40227 |
B2 | 38.68471 | 38.6089 | 10.33989 | 38.67565 |
C1 | 38.71073 | 38.57181 | 10.08841 | 38.79719 |
D2 | 38.69628 | 38.60631 | 10.33224 | 38.46438 |
E1 | 38.25426 | 38.59489 | 9.020387 | 38.56648 |
F3 | 38.51775 | 38.58169 | 10.16217 | 38.53941 |
39.10419 | 38.56534 | 9.611899 | 38.98086 |
Optimal Combination | Tensile Strength | Hardness | Impact Strength | Bending Strength |
---|---|---|---|---|
A3 | 39.17581 | 38.67478 | 10.31462 | 40.42158 |
B2 | 38.68471 | 38.6089 | 10.33989 | 38.67565 |
C3 | 38.4098 | 38.61244 | 10.1688 | 38.50768 |
D2 | 38.69628 | 38.60631 | 10.33224 | 38.46438 |
E2 | 38.55264 | 38.62627 | 10.54918 | 39.04502 |
F2 | 38.47925 | 38.65794 | 9.981667 | 39.38358 |
39.77835 | 38.76755 | 12.22012 | 41.03337 |
Method | DEA S/N (db) | PCA S/N (db) | Improvement S/N (db) | |
---|---|---|---|---|
Quality | ||||
tensile strength | 39.77835 | 39.10419 | 0.67416 | |
hardness | 38.76755 | 38.56534 | 0.20221 | |
impact strength | 12.22012 | 9.611899 | 2.608221 | |
bending strength | 41.03337 | 38.98086 | 2.05251 |
Group | 1 | 2 | 3 | 4 | 5 | Average | LTB S/N (db) | |
---|---|---|---|---|---|---|---|---|
Quaty | ||||||||
tensile strength | 94.14074 | 93.86753 | 93.91307 | 94.18627 | 94.07243 | 94.03601 | 39.46586 | |
hardness | 86.4 | 86.2 | 86.2 | 86.2 | 86.4 | 86.28 | 38.71819 | |
impact strength | 3.284615 | 3.284615 | 3.449385 | 3.284615 | 3.122 | 3.285046 | 10.31786 | |
bending strength | 97.20731 | 98.21989 | 98.21989 | 98.21989 | 99.23247 | 98.21989 | 39.84344 |
Group | 1 | 2 | 3 | 4 | 5 | Average | LTB S/N (db) | |
---|---|---|---|---|---|---|---|---|
Quality | ||||||||
tensile strength | 94.52777 | 95.05141 | 95.37014 | 95.55228 | 94.68714 | 95.03775 | 39.5577 | |
hardness | 86.2 | 86.8 | 86.6 | 87 | 86 | 86.52 | 38.74209 | |
impact strength | 4.358308 | 4.523077 | 4.441231 | 4.523077 | 4.358308 | 4.4408 | 12.94564 | |
bending strength | 119.484 | 120.4966 | 120.4966 | 119.484 | 119.484 | 119.889 | 41.57537 |
Quality | Tensile Strength (MPa) | Hardness (Shore D) | Impact Strength (J/cm2) | Bending Strength (MPa) | |
---|---|---|---|---|---|
Group | |||||
PCA confirmation experimental group | 94.03601 | 86.28 | 3.285046 | 98.21989 | |
DEA confirmation experimental group | 95.03775 | 86.52 | 4.4408 | 119.889 | |
Taguchi group 8 | 94.58278 | 85.52 | 3.433446 | 89.02934 | |
Taguchi group 7 | 90.01753 | 86.64 | 3.008923 | 114.2964 | |
Taguchi group 2 | 79.38108 | 85.36 | 3.828677 | 73.57561 | |
Taguchi Group 18 | 88.04105 | 85.88 | 3.4328 | 117.2763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, C.-H.; Huang, C.-C.; Kuo, C.-F.J.; Ahmad, N. Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding. Polymers 2023, 15, 3018. https://doi.org/10.3390/polym15143018
Hsiao C-H, Huang C-C, Kuo C-FJ, Ahmad N. Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding. Polymers. 2023; 15(14):3018. https://doi.org/10.3390/polym15143018
Chicago/Turabian StyleHsiao, Chi-Hao, Chang-Chiun Huang, Chung-Feng Jeffrey Kuo, and Naveed Ahmad. 2023. "Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding" Polymers 15, no. 14: 3018. https://doi.org/10.3390/polym15143018
APA StyleHsiao, C. -H., Huang, C. -C., Kuo, C. -F. J., & Ahmad, N. (2023). Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding. Polymers, 15(14), 3018. https://doi.org/10.3390/polym15143018