Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology
Abstract
:1. Introduction
2. Fabrication of CNT/PVDF Composite Fibers Using Wet Spinning
2.1. Material Selection and Fabrication Process
2.2. Determination of Design Parameters Using RSM
3. CNT/PVDF Fibers
3.1. Characterization
3.2. Evaluation via RSM under Different Wet Spinning Conditions
4. Optimization of Multiple Properties of CNT/PVDF Fibers
4.1. Analysis of Variance (ANOVA)
4.2. Response Surface Analysis
4.3. Optimization of Multiple Properties
- : Bath concentration (%)
- : Bath temperature (°C)
- : Drying temperature (°C)
- : Elongation (%)
- : Weight of tensile strength
- : Weight of electrical conductivity
- = Function of tensile strength
- = Function of electrical conductivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Morimoto, T.; Mukai, K.; Asaka, K.; Okazaki, T. Relationship between Mechanical and Electrical Properties of Continuous Polymer-Free Carbon Nanotube Fibers by Wet-Spinning Method and Nanotube-Length Estimated by Far-Infrared Spectroscopy. J. Phys. Chem. C 2016, 120, 20419–20427. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.-W.; Abtahi, M.; Wong, S.-C.; Liu, Y.; Li, Q. Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos. Sci. Technol. 2013, 88, 1–8. [Google Scholar] [CrossRef]
- Xue, P.; Park, K.; Tao, X.; Chen, W.; Cheng, X. Electrically conductive yarns based on PVA/carbon nanotubes. Compos. Struct. 2007, 78, 271–277. [Google Scholar] [CrossRef]
- Ma, R.; Kang, B.; Cho, S.; Choi, M.; Baik, S. Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers. ACS Nano 2015, 9, 10876–10886. [Google Scholar] [CrossRef]
- Wang, S.-H.; Wan, Y.; Sun, B.; Liu, L.-Z.; Xu, W. Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Res. Lett. 2014, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Wang, Q.; Su, R.; Wang, K.; Zhang, Q.; Fu, Q. Enhanced compatibilization and orientation of polyvinyl alcohol/gelatin composite fibers using carbon nanotubes. J. Appl. Polym. Sci. 2008, 107, 4070–4075. [Google Scholar] [CrossRef]
- Mukai, K.; Asaka, K.; Wu, X.; Morimoto, T.; Okazaki, T.; Saito, T.; Yumura, M. Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Appl. Phys. Express 2016, 9, 55101. [Google Scholar] [CrossRef]
- Glauß, B.; Steinmann, W.; Walter, S.; Beckers, M.; Seide, G.; Gries, T.; Roth, G. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications. Materials 2013, 6, 2642–2661. [Google Scholar] [CrossRef] [Green Version]
- Mirbaha, H.; Nourpanah, P.; Scardi, P.; D’incau, M.; Greco, G.; Valentini, L.; Bon, S.B.; Arbab, S.; Pugno, N. The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process. Materials 2019, 12, 2797. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.-W.; Choi, C.-W.; Jin, J.-W. A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties. Polymers 2021, 13, 4048. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Bartholome, C.; Poulin, P.; Marioli-Riga, Z. Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 2010, 70, 260–271. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Bartholome, C.; Poulin, P.; Marioli-Riga, Z. Damage detection of glass fiber reinforced composites using embedded PVA–carbon nanotube (CNT) fibers. Compos. Sci. Technol. 2010, 70, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Nie, X.; Yu, X.; Song, B.; Blecke, J. Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites. Mater. Des. 2018, 151, 133–140. [Google Scholar] [CrossRef]
- Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Ye, D.; Zhu, C.; Qiu, L.; Huang, Y. Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft. Sensors 2017, 17, 2677. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-M.; Chou, M.-H.; Zeng, W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials 2018, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Eun, J.H.; Sung, S.M.; Kim, M.S.; Choi, B.K.; Lee, J.S. Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers. Mater. Des. 2021, 206, 109785. [Google Scholar] [CrossRef]
- Chinnappan, A.; Lee, J.K.Y.; Jayathilaka, W.; Ramakrishna, S. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int. J. Hydrogen Energy 2018, 43, 721–729. [Google Scholar] [CrossRef]
- Mercader, C.; Denis-Lutard, V.; Jestin, S.; Maugey, M.; Derré, A.; Zakri, C.; Poulin, P. Scalable process for the spinning of PVA–carbon nanotube composite fibers. J. Appl. Polym. Sci. 2012, 125, E191–E196. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 270–310. [Google Scholar]
- Rigotti, D.; Fredi, G.; Perin, D.; Bikiaris, D.N.; Pegoretti, A.; Dorigato, A. Statistical Modeling and Optimization of the Drawing Process of Bioderived Polylactide/Poly(dodecylene furanoate) Wet-Spun Fibers. Polymers 2022, 14, 396. [Google Scholar] [CrossRef]
- Oroumei, A.; Naebe, M. Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym. 2017, 18, 2079–2093. [Google Scholar] [CrossRef]
- Baojun, Q.; Ding, P.; Zhenqiou, W. The mechanism and characterstics of dry-jet wet-spinning of acrylic fibers. Adv. Polym. Technol. 1986, 6, 509–529. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, D.H.; Chung, Y.S.; Hwang, S.K.; Hwang, H.Y.; Kim, S.S. Effect of processing parameters of the continuous wet spinning system on the crystal phase of PVDF fibers. J. Appl. Polym. Sci. 2018, 135, 45712. [Google Scholar] [CrossRef]
- Aveiro, P. Design of Experiments in Production Engineering; Davim, J.P., Ed.; Springer: Basel, Switzerland, 2016. [Google Scholar] [CrossRef]
- Alin, A. Minitab. WIREs Comput. Stat. 2010, 2, 723–727. [Google Scholar] [CrossRef]
- Ilankeeran, P.K.; Mohite, P.M.; Kamle, S. Axial Tensile Testing of Single Fibres. Mod. Mech. Eng. 2012, 2, 151–156. [Google Scholar] [CrossRef] [Green Version]
- IEC 60093; Methods of Test for Volume Resistivity and Surface Resistivity of Solid Electrical Insulating Materials. International Electrotechnical Commission (IEC): London, UK, 1980.
- Image, J. Java Image Processing Program; Version 1.53f; University of Wisconsin: Madison, WI, USA, 2020. [Google Scholar]
Type | Value |
---|---|
Density (g/cm3) | 2.6 |
Young’s modulus (GPa) | 940 |
Poisson’s ratio | 0.20 |
Bundle length (μm) | Ave. 40~50 |
Diameter (nm) | Ave. 11~13 |
Carbon purity (%) | ~95 |
Ref. | General MWCNT |
Type | Value |
---|---|
Density (g/cm3) | 1.78 |
Young’s modulus (GPa) | 2 |
Poisson’s ratio | 0.34 |
Tensile strength, yield (MPa) | 35 |
Elongation at break (%) | 20~100 |
Melting point (°C) | 170 |
Molecular weight (g/mol) | 441,000 |
Type | Value |
---|---|
Linear formula | CH3CON(CH3)2; C4H9NO |
Density (g/cm3) | 0.937 |
Melting point (°C) | −20 |
Boiling point (°C) | 164~166 |
Flash point (°C) | 66 |
Assay (%) | 99.5 |
Molecular weight (g/mol) | 87.12 |
Case | Bath Concentration x1, (%) | Bath Temperature x2, (°C) | Drying Temperature x3, (°C) | Elongation x4, (%) |
---|---|---|---|---|
1 | 10 | 40 | 100 | 200 |
2 | 30 | 40 | 100 | 200 |
3 | 10 | 60 | 100 | 200 |
4 | 30 | 60 | 100 | 200 |
5 | 10 | 40 | 120 | 200 |
6 | 30 | 40 | 120 | 200 |
7 | 10 | 60 | 120 | 200 |
8 | 30 | 60 | 120 | 200 |
9 | 10 | 40 | 100 | 400 |
10 | 30 | 40 | 100 | 400 |
11 | 10 | 60 | 100 | 400 |
12 | 30 | 60 | 100 | 400 |
13 | 10 | 40 | 120 | 400 |
14 | 30 | 40 | 120 | 400 |
15 | 10 | 60 | 120 | 400 |
16 | 30 | 60 | 120 | 400 |
17 | 0 | 50 | 110 | 300 |
18 | 40 | 50 | 110 | 300 |
19 | 20 | 30 | 110 | 300 |
20 | 20 | 70 | 110 | 300 |
21 | 20 | 50 | 90 | 300 |
22 | 20 | 50 | 130 | 300 |
23 | 20 | 50 | 110 | 100 |
24 | 20 | 50 | 110 | 500 |
25 | 20 | 50 | 110 | 300 |
26 | 20 | 50 | 110 | 300 |
27 | 20 | 50 | 110 | 300 |
28 | 20 | 50 | 110 | 300 |
29 | 20 | 50 | 110 | 300 |
30 | 20 | 50 | 110 | 300 |
31 | 20 | 50 | 110 | 300 |
Case | Tensile Strength | ||||
---|---|---|---|---|---|
Max (MPa) | Min (MPa) | Average (MPa) | Std. dev (MPa) | COV | |
1 | 21.50 | 15.05 | 19.15 | 0.94 | 0.05 |
2 | 19.88 | 15.10 | 18.94 | 0.79 | 0.04 |
3 | 24.63 | 17.57 | 22.67 | 1.24 | 0.05 |
4 | 21.73 | 18.70 | 21.26 | 0.49 | 0.02 |
5 | 26.54 | 18.88 | 23.55 | 1.69 | 0.07 |
6 | 31.23 | 25.16 | 28.32 | 1.37 | 0.05 |
7 | 40.25 | 20.22 | 29.03 | 4.08 | 0.14 |
8 | 61.51 | 52.91 | 58.11 | 1.77 | 0.03 |
9 | 25.47 | 21.12 | 23.91 | 0.87 | 0.04 |
10 | 36.76 | 21.40 | 26.51 | 3.57 | 0.13 |
11 | 38.95 | 31.24 | 34.71 | 1.71 | 0.05 |
12 | 38.32 | 26.78 | 33.02 | 2.14 | 0.06 |
13 | 37.15 | 27.95 | 32.81 | 2.06 | 0.06 |
14 | 48.83 | 41.66 | 45.24 | 1.98 | 0.04 |
15 | 49.71 | 35.36 | 42.61 | 3.03 | 0.07 |
16 | 55.84 | 36.82 | 47.46 | 4.50 | 0.09 |
17 | 22.58 | 19.32 | 21.03 | 0.82 | 0.04 |
18 | 37.95 | 29.56 | 34.77 | 2.00 | 0.06 |
19 | 25.40 | 19.76 | 22.88 | 1.30 | 0.06 |
20 | 46.95 | 34.31 | 41.34 | 2.42 | 0.06 |
21 | 39.46 | 32.25 | 35.99 | 1.63 | 0.05 |
22 | 67.41 | 50.01 | 63.78 | 3.08 | 0.05 |
23 | 40.49 | 32.43 | 38.44 | 1.20 | 0.03 |
24 | 52.39 | 42.31 | 47.36 | 2.25 | 0.05 |
25 | 52.17 | 45.17 | 49.50 | 1.65 | 0.03 |
26 | 50.38 | 35.60 | 47.29 | 1.77 | 0.04 |
27 | 51.91 | 46.28 | 48.47 | 1.44 | 0.03 |
28 | 48.41 | 42.92 | 45.35 | 1.32 | 0.03 |
29 | 50.00 | 44.51 | 46.57 | 1.32 | 0.03 |
30 | 50.88 | 45.61 | 47.75 | 1.35 | 0.03 |
31 | 48.65 | 42.76 | 44.91 | 1.35 | 0.03 |
Case | Electrical Conductivity | ||||
---|---|---|---|---|---|
Max (S/cm) | Min (S/cm) | Average (S/cm) | Std. dev (S/cm) | COV | |
1 | 2.31 × 10−5 | 1.94 × 10−5 | 2.13 × 10−5 | 1.08 × 10−6 | 5.09 × 10−2 |
2 | 2.63 × 10−5 | 2.29 × 10−5 | 2.46 × 10−5 | 9.61 × 10−7 | 3.90 × 10−2 |
3 | 4.48 × 10−5 | 3.98 × 10−5 | 4.23 × 10−5 | 1.49 × 10−6 | 3.54 × 10−2 |
4 | 2.58 × 10−5 | 2.34 × 10−5 | 2.46 × 10−5 | 6.49 × 10−7 | 2.63 × 10−2 |
5 | 4.69 × 10−5 | 4.03 × 10−5 | 4.35 × 10−5 | 2.05 × 10−6 | 4.71 × 10−2 |
6 | 3.97 × 10−5 | 3.53 × 10−5 | 3.75 × 10−5 | 1.31 × 10−6 | 3.50 × 10−2 |
7 | 3.96 × 10−5 | 3.46 × 10−5 | 3.72 × 10−5 | 1.46 × 10−6 | 3.94 × 10−2 |
8 | 5.05 × 10−6 | 4.57 × 10−6 | 4.81 × 10−6 | 1.45 × 10−7 | 3.02 × 10−2 |
9 | 2.67 × 10−6 | 2.33 × 10−6 | 2.50 × 10−6 | 1.06 × 10−7 | 4.23 × 10−2 |
10 | 2.12 × 10−6 | 1.88 × 10−6 | 2.00 × 10−6 | 7.00 × 10−8 | 3.50 × 10−2 |
11 | 5.40 × 10−6 | 4.61 × 10−6 | 5.00 × 10−6 | 2.39 × 10−7 | 4.78 × 10−2 |
12 | 8.23 × 10−6 | 7.12 × 10−6 | 7.68 × 10−6 | 3.19 × 10−7 | 4.15 × 10−2 |
13 | 6.29 × 10−6 | 5.28 × 10−6 | 5.78 × 10−6 | 2.92 × 10−7 | 5.04 × 10−2 |
14 | 9.68 × 10−6 | 8.19 × 10−6 | 8.94 × 10−6 | 4.62 × 10−7 | 5.17 × 10−2 |
15 | 1.73 × 10−5 | 1.51 × 10−5 | 1.62 × 10−5 | 6.28 × 10−7 | 3.87 × 10−2 |
16 | 1.26 × 10−5 | 1.16 × 10−5 | 1.21 × 10−5 | 3.19 × 10−7 | 2.64 × 10−2 |
17 | 2.40 × 10−6 | 2.14 × 10−6 | 2.27 × 10−6 | 8.10 × 10−8 | 3.57 × 10−2 |
18 | 7.04 × 10−6 | 6.12 × 10−6 | 6.58 × 10−6 | 2.76 × 10−7 | 4.19 × 10−2 |
19 | 1.08 × 10−5 | 9.86 × 10−6 | 1.03 × 10−5 | 2.59 × 10−7 | 2.52 × 10−2 |
20 | 2.27 × 10−5 | 1.92 × 10−5 | 2.09 × 10−5 | 1.00 × 10−6 | 4.79 × 10−2 |
21 | 4.37 × 10−6 | 3.75 × 10−6 | 4.06 × 10−6 | 1.78 × 10−7 | 4.38 × 10−2 |
22 | 9.75 × 10−6 | 8.44 × 10−6 | 9.09 × 10−6 | 3.80 × 10−7 | 4.18 × 10−2 |
23 | 3.64 × 10−5 | 3.16 × 10−5 | 3.40 × 10−5 | 1.43 × 10−6 | 4.20 × 10−2 |
24 | 2.18 × 10−6 | 2.00 × 10−6 | 2.09 × 10−6 | 5.65 × 10−8 | 2.70 × 10−2 |
25 | 1.07 × 10−5 | 9.89 × 10−6 | 1.03 × 10−5 | 2.25 × 10−7 | 2.19 × 10−2 |
26 | 1.09 × 10−5 | 9.76 × 10−6 | 1.03 × 10−5 | 3.20 × 10−7 | 3.12 × 10−2 |
27 | 1.10 × 10−5 | 9.61 × 10−6 | 1.03 × 10−5 | 4.13 × 10−7 | 4.00 × 10−2 |
28 | 1.12 × 10−5 | 9.47 × 10−6 | 1.03 × 10−5 | 4.76 × 10−7 | 4.60 × 10−2 |
29 | 1.10 × 10−5 | 9.37 × 10−6 | 1.02 × 10−5 | 4.57 × 10−7 | 4.47 × 10−2 |
30 | 1.10 × 10−5 | 9.72 × 10−6 | 1.04 × 10−5 | 3.94 × 10−7 | 3.77 × 10−2 |
31 | 1.09 × 10−5 | 9.64 × 10−6 | 1.03 × 10−5 | 3.95 × 10−7 | 3.84 × 10−2 |
DF | Adj SS | Adj MS | F | p | |
---|---|---|---|---|---|
x1 | 1 | 252.89 | 252.89 | 7.82 | 0.013 |
x2 | 1 | 480.16 | 480.16 | 14.84 | 0.001 |
x3 | 1 | 1100.49 | 1100.49 | 34.02 | 0 |
x4 | 1 | 287.7 | 287.7 | 8.89 | 0.009 |
x12 | 1 | 991 | 991 | 30.63 | 0 |
x22 | 1 | 668.51 | 668.51 | 20.67 | 0 |
x32 | 1 | 4.35 | 4.35 | 0.13 | 0.719 |
x42 | 1 | 130.65 | 130.65 | 4.04 | 0.062 |
x1x2 | 1 | 7.9 | 7.9 | 0.24 | 0.628 |
x1x3 | 1 | 168.02 | 168.02 | 5.19 | 0.037 |
x1x4 | 1 | 12.32 | 12.32 | 0.38 | 0.546 |
x2x3 | 1 | 36.44 | 36.44 | 1.13 | 0.304 |
x2x4 | 1 | 8.69 | 8.69 | 0.27 | 0.611 |
x3x4 | 1 | 3.08 | 3.08 | 0.1 | 0.762 |
Error term | 16 | 517.59 | 32.35 | - | - |
DF | Adj SS | Adj MS | F | p | |
---|---|---|---|---|---|
x1 | 1 | 7.7 × 10−5 | 7.7 × 10−5 | 1.36 | 0.026 |
x2 | 1 | 2.6 × 10−5 | 2.6 × 10−5 | 0.46 | 0.049 |
x3 | 1 | 8.9 × 10−5 | 8.9 × 10−5 | 1.58 | 0.023 |
x4 | 1 | 2.4 × 10−3 | 2.4 × 10−3 | 42.54 | 0 |
x12 | 1 | 1.8 × 10−6 | 1.8 × 10−6 | 0.03 | 0.086 |
x22 | 1 | 1.9 × 10−4 | 1.9 × 10−4 | 3.30 | 0.009 |
x32 | 1 | 2.4 × 10−6 | 2.4 × 10−6 | 0.04 | 0.084 |
x42 | 1 | 2.9 × 10−4 | 2.9 × 10−4 | 5.09 | 0.004 |
x1x2 | 1 | 1.7 × 10−4 | 1.7 × 10−4 | 2.96 | 0.010 |
x1x3 | 1 | 4.6 × 10−5 | 4.6 × 10−5 | 0.82 | 0.038 |
x1x4 | 1 | 1.8 × 10−4 | 1.8 × 10−4 | 3.22 | 0.009 |
x2x3 | 1 | 1.9 × 10−4 | 1.9 × 10−4 | 3.32 | 0.009 |
x2x4 | 1 | 9.9 × 10−5 | 9.9 × 10−5 | 1.76 | 0.020 |
x3x4 | 1 | 1.5 × 10−5 | 1.5 × 10−5 | 0.27 | 0.061 |
Error term | 16 | 9.0 × 10−4 | 5.6 × 10−5 | - | - |
Optimization | Tensile Strength | Electrical Conductivity | Tensile Strength & Electrical Conductivity | |
---|---|---|---|---|
Bath concentration (%) | 27.88 | 20.25 | 37.03 | |
Bath temperature (°C) | 54.48 | 39.87 | 58.27 | |
Drying temperature (°C) | 130 | 130 | 128.1 | |
Elongation (%) | 382.83 | 100 | 100 | |
Predicted value | Tensile strength (MPa) | 68.18 | 32.78 | 45.03 |
Electrical conductivity (S/cm) | 7.31 × 10−6 | 5.84 × 10−5 | 7.31 × 10−6 |
Optimization | Tensile Strength | Electrical Conductivity | Tensile Strength & Electrical Conductivity | |
---|---|---|---|---|
Experimental value | Tensile strength (MPa) | 69.76 | 33.47 | 52.53 |
Electrical conductivity (S/cm) | 5.99 × 10−6 | 5.23 × 10−5 | 1.17 × 10−5 | |
Error | Predicted value of Tensile strength | 2.3% | 2.1% | 14.3% |
Experimental value of Electrical conductivity | 22% | 11.70% | 27.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.-W.; Jin, J.-W.; Kang, K.-W. Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology. Polymers 2023, 15, 3090. https://doi.org/10.3390/polym15143090
Choi C-W, Jin J-W, Kang K-W. Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology. Polymers. 2023; 15(14):3090. https://doi.org/10.3390/polym15143090
Chicago/Turabian StyleChoi, Chan-Woong, Ji-Won Jin, and Ki-Weon Kang. 2023. "Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology" Polymers 15, no. 14: 3090. https://doi.org/10.3390/polym15143090
APA StyleChoi, C. -W., Jin, J. -W., & Kang, K. -W. (2023). Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology. Polymers, 15(14), 3090. https://doi.org/10.3390/polym15143090