Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Extraction of Ulva rigida
2.2. Analysis of the Biochemical Composition of Ulva rigida Extracts
2.3. 1H Nuclear Magnetic Resonance (NMR) of Ulva rigida Extracts
2.4. Preparation of Ulva rigida Films
2.5. Morphology of Ulva rigida Films
2.5.1. Microstructure
2.5.2. X-ray Diffraction Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR) of Ulva rigida Films
2.7. Thermal Stability and Properties of Ulva rigida Films
2.7.1. Thermogravimetric Analysis (TGA)
2.7.2. Differential Scanning Calorimetry (DSC)
2.8. Surface and Barrier Properties of Ulva rigida Films
2.8.1. Water Contact Angle
2.8.2. Water Vapor Permeability (WVP)
2.8.3. Oxygen Permeability (OP)
2.9. Mechanical Properties of Ulva rigida Films
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Ulva rigida Seaweed Extracts
3.1.1. Proximate Analysis and Amino Acid Composition
3.1.2. Nuclear Magnetic Resonance (NMR)
3.2. Film Microstructure
3.3. Fourier Transform Infrared Spectroscopy
3.4. Thermogravimetric Analysis
3.5. Differential Scanning Calorimetry (DSC)
3.6. X-ray Diffraction
3.7. Surface Hydrophobicity and Barrier Properties
3.8. Tensile Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kidgell, J.T.; Glasson, C.R.; Magnusson, M.; Vamvounis, G.; Sims, I.M.; Carnachan, S.M.; Taki, A.C. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int. J. Biol. Macromol. 2020, 150, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Brain-Isasi, S.; Carú, C.; Lienqueo, M.E. Valorization of the green seaweed Ulva rigida for production of fungal biomass protein using a hypercellulolytic terrestrial fungus. Algal Res. 2021, 59, 102457. [Google Scholar] [CrossRef]
- Leiro, J.M.; Castro, R.; Arranz, J.A.; Lamas, J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int. Immunopharmacol. 2007, 7, 879–888. [Google Scholar] [CrossRef]
- Morelli, A.; Chiellini, F. Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromol. Chem. Phys. 2010, 211, 821–832. [Google Scholar] [CrossRef]
- Shuuluka, D.; Bolton, J.J.; Anderson, R.J. Protein content, amino acid composition and nitrogen-to-protein conversion factors of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from an aquaculture system, in South Africa. J. Appl. Phycol. 2013, 25, 677–685. [Google Scholar] [CrossRef]
- Wahlström, N.; Edlund, U.; Pavia, H.; Toth, G.; Jaworski, A.; Pell, A.J.; Richter-Dahlfors, A. Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 2020, 27, 3707–3725. [Google Scholar] [CrossRef] [Green Version]
- Hamouda, R.A.; Hussein, M.H.; El-Naggar, N.E.; Karim-Eldeen, M.A.; Alamer, K.H.; Saleh, M.A.; El-Azeem, R.M.A. Promoting Effect of Soluble Polysaccharides Extracted from Ulva spp. on Zea mays L. Growth. Molecules 2022, 27, 1394. [Google Scholar] [CrossRef]
- Doh, H.; Dunno, K.D.; Whiteside, W.S. Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll. 2020, 105, 105744. [Google Scholar] [CrossRef]
- Šimkovic, I.; Gucmann, F.; Mendichi, R.; Schieroni, A.G.; Piovani, D.; Dobročka, E.; Hricovíni, M. Extraction and characterization of polysaccharide films prepared from Furcellaria lumbricalis and Gigartina skottsbergii seaweeds. Cellulose 2021, 28, 9567–9588. [Google Scholar] [CrossRef]
- Cebrián-Lloret, V.; Metz, M.; Martínez-Abad, A.; Knutsen, S.H.; Ballance, S.; López-Rubio, A.; Martínez-Sanz, M. Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. Algal Res. 2022, 61, 102576. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.; Zhu, Y.; Zeng, Y.; Fang, C.; Liu, Y.; Jiang, W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem. 2022, 393, 133342. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Silva, R.R.A.; de Oliveira, T.V.; Stringheta, P.C.; Pinto, M.R.M.R.; Soares, N.D.F.F. Glycerol and triethyl citrate plasticizer effects on molecular, thermal, mechanical, and barrier properties of cellulose acetate films. Food Biosci. 2021, 42, 101202. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, D.J. Plasticizer effect on oxygen permeability of β-lactoglobulin films. J. Agric. Food Chem. 2000, 48, 6298–6302. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Wongphan, P.; Promhuad, K.; Promsorn, J.; Harnkarnsujarit, N. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids Surf. B Biointerfaces 2022, 214, 112472. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemistry). Official Methods of Analysis of the Association of Analytical Chemists International; Association of Official Analytical Chemistry: Rockville, MD, USA, 2005. [Google Scholar]
- Breil, C.; Vian, M.A.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhabi, N.A.; Valan Arasu, M. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. Evid. Based Complement. Alternat. Med. 2016, 2016, 7631864. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Meng, H.; Huang, Q.; Li, C.; Fu, X. Preparation and characterization of chitosan-based edible active films incorporated with Sargassum pallidum polysaccharides by ultrasound treatment. Int. J. Biol. Macromol. 2021, 183, 473–480. [Google Scholar] [CrossRef]
- Wongphan, P.; Panrong, T.; Harnkarnsujarit, N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packag. Shelf Life 2022, 32, 100844. [Google Scholar] [CrossRef]
- Higaki, Y.; Takahara, A. Structure and properties of polysaccharide/imogolite hybrids. Polym. J. 2022, 54, 473–479. [Google Scholar] [CrossRef]
- Santos, P.R.M.; Johny, A.; Silva, C.Q.; Azenha, M.A.; Vázquez, J.A.; Valcarcel, J.; Silva, A.F. Improved Metal Cation Optosensing Membranes through the Incorporation of Sulphated Polysaccharides. Molecules 2022, 27, 5026. [Google Scholar] [CrossRef] [PubMed]
- Promsorn, J.; Harnkarnsujarit, N. Pyrogallol loaded thermoplastic cassava starch based films as bio-based oxygen scavengers. Ind. Crops Prod. 2022, 186, 115226. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Harnkarnsujarit, N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag. Shelf Life 2022, 33, 100901. [Google Scholar] [CrossRef]
- Bachler, J.; Handle, P.H.; Giovambattista, N.; Loerting, T. Glass polymorphism and liquid–liquid phase transition in aqueous solutions: Experiments and computer simulations. Phys. Chem. Chem. Phys. 2019, 21, 23238–23268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, Y.H.; Drusch, S. Phase Transitions in Foods; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog. Mater. Sci. 2022, 124, 100889. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.; Sun, Z.; Song, J.; Deng, X. Robust superhydrophobicity: Mechanisms and strategies. Chem. Soc. Rev. 2021, 50, 4031–4061. [Google Scholar] [CrossRef]
- Coma, V.; Sebti, I.; Pardon, P.; Pichavant, F.H.; Deschamps, A. Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr. Polym. 2003, 51, 265–271. [Google Scholar] [CrossRef]
- Benvenuti, M.; Mangani, S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2007, 2, 1633–1651. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control. 2022, 142, 109273. [Google Scholar] [CrossRef]
Amino Acid Composition (mg/100 g) | |
---|---|
Aspartic acid | 2055.87 ± 47.90 |
Glutamic acid | 1433.68 ± 28.79 |
Serine | 823.04 ± 19.28 |
Histidine | 252.36 ± 5.08 |
Glycine | 1034.79 ± 18.34 |
Threonine | 531.57 ± 15.39 |
Arginine | 769.26 ± 16.84 |
Alanine | 1097.61 ± 25.23 |
Tyrosine | 517.68 ± 6.31 |
Cystine | 745.40 ± 16.80 |
Valine | 345.38 ± 5.88 |
Methionine | 290.81 ± 2.44 |
Phenylalanine | 629.89 ± 16.22 |
Isoleucine | 214.56 ± 2.47 |
Leucine | 749.68 ± 19.07 |
Lysine | 561.83 ± 13.86 |
Tryptophan | 181.37 ± 3.51 |
Proline | 670.66 ± 34.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonchaeng, U.; Wongphan, P.; Pan-utai, W.; Paopun, Y.; Kansandee, W.; Satmalee, P.; Tamtin, M.; Kosawatpat, P.; Harnkarnsujarit, N. Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida. Polymers 2023, 15, 3342. https://doi.org/10.3390/polym15163342
Sonchaeng U, Wongphan P, Pan-utai W, Paopun Y, Kansandee W, Satmalee P, Tamtin M, Kosawatpat P, Harnkarnsujarit N. Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida. Polymers. 2023; 15(16):3342. https://doi.org/10.3390/polym15163342
Chicago/Turabian StyleSonchaeng, Uruchaya, Phanwipa Wongphan, Wanida Pan-utai, Yupadee Paopun, Wiratchanee Kansandee, Prajongwate Satmalee, Montakan Tamtin, Prapat Kosawatpat, and Nathdanai Harnkarnsujarit. 2023. "Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida" Polymers 15, no. 16: 3342. https://doi.org/10.3390/polym15163342
APA StyleSonchaeng, U., Wongphan, P., Pan-utai, W., Paopun, Y., Kansandee, W., Satmalee, P., Tamtin, M., Kosawatpat, P., & Harnkarnsujarit, N. (2023). Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida. Polymers, 15(16), 3342. https://doi.org/10.3390/polym15163342