Development of Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins–Gambier Catechins to Detect Banana Ripeness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Anthocyanin Extraction from Red Dragon Fruit Peel
2.2.2. Analysis of the Anthocyanin Levels of Red Dragon Fruit Peel
2.2.3. Addition of Gambier Catechins
2.2.4. Color Change Analysis of the Color Extracts
2.2.5. Indicator Film Preparation
2.2.6. Indicator Film Casting
2.2.7. Characterization of Indicator Films’ Surface Color
2.2.8. Analysis of Indicator Film Sensitivity to Various pH Conditions
2.2.9. Characterization of Indicator Film Structure
2.2.10. Characterization of Mechanical Properties of the Films
2.2.11. Physical Characterization of Films
Analysis of Transparency and Transmittance of the Indicator Films
Analysis of Moisture Content and Solubility of the Indicator Films
Analysis of Water Vapor Transmission Rate (WVTR)
2.2.12. Analysis of Antioxidant Activity
Monitoring the Ripeness of Bananas
Statistical Analysis
3. Results
3.1. Anthocyanin Level of Red Dragon Fruit Peel Extract
3.2. Changes in Extract Color under Various pH Conditions
3.3. Indicator Films
3.4. Surface Colors of the Indicator Films
3.5. Indicator Film Sensitivity to Various pH Conditions
3.6. Structural Properties of the Indicator Films
3.7. Thickness and Mechanical Properties of the Indicator Films
3.8. Physical Properties of the Indicator Films
3.8.1. Transmittance and Transparency of the Indicator Films
3.8.2. Moisture Content and Solubility of the Indicator Films
3.8.3. Water Vapor Transmission Rate (WVTR)
3.9. Antioxidant Activity of the Indicator Films
4. Banana Ripening Monitoring
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badan Pusat Statistik: Produksi Tanaman Buah-Buahan 2022. Available online: https://www.bps.go.id/indicator/55/62/1/produksi-tanaman-buah-buahan.html (accessed on 27 August 2023).
- Sastrahidayat, I.R.; Jauhary, S. Introduction Study of Cavendish Banana and Its Pests and Diseases; Brawijaya University Press: Malang, Indonesia, 2015. [Google Scholar]
- Pramono, E.K. Measuring the maturity level of cavendish bananas based on the reflectance of led light. J. Agric. Postharvest Res. 2021, 17, 88–94. [Google Scholar]
- Firouz, M.S.; Mohi-Alden, K.; Omid, M. A critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Int. 2021, 141, 110113. [Google Scholar] [CrossRef]
- Nature, A.U.; Rathi, P.; Beshai, H.; Sarabha, G.K.; Deen, M.J. Fruit quality monitoring with smart packaging. Sensors 2021, 21, 1509. [Google Scholar]
- Dong, H.; Ling, Z.; Zhang, X.; Zhang, X.; Ramaswamy, S.; Xu, F. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sens. Actuators B Chem. 2020, 309, 127752. [Google Scholar] [CrossRef]
- Khoo, H.E.; He, X.; Tang, Y.; Li, Z.; Li, C.; Zeng, Y.; Tang, J.; Sun, J. Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Front. Nutr. 2022, 9, 894438. [Google Scholar] [CrossRef]
- Netravati; Gomez, S.; Pathrose, B.; Raj, M.; Joseph, M.P.; Kuruvila, B. Comparative evaluation of anthocyanin pigment yield and its attributes from butterfly pea (Clitorea ternatea L.) flowers as prospective food colorant using different extraction methods. Future Foods 2022, 6, 100199. [Google Scholar] [CrossRef]
- Ekaputra, T.; Pramitasari, R. Evaluation of physicochemical properties of anthocyanin extracts and powders from purple sweet potato (Ipomoea batatas L.). Food Res. 2020, 4, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ye, Y.; Liu, J.; Fei, P. Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chem. X 2023, 17, 100531. [Google Scholar] [CrossRef]
- Han, B.; Chen, P.; Guo, J.; Yu, H.; Zhong, S.; Li, D.; Liu, C.; Feng, Z.; Jiang, B. A novel intelligent indicator film: Preparation, characterization, and application. Molecules 2023, 28, 3384. [Google Scholar] [CrossRef]
- Anugrah, D.S.B.; Delarosa, G.; Wangker, P.; Pramitasari, R.; Subali, D. Utilising n-glutaryl chitosan-based film with butterfly pea flower anthocyanin as a freshness indicator of chicken breast. Packag. Technol. Sci. 2023, 36, 681–697. [Google Scholar] [CrossRef]
- Anugrah, D.S.B.A.; Darmalim, L.V.; Sinanu, J.D.; Pramitasari, R.; Subali, D.; Prasetyanto, E.A.; Cao, X.T. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns. Int. J. Biol. Macromol. 2023, 251, 126203. [Google Scholar] [CrossRef] [PubMed]
- Azlim, N.A.; Mohammadi Nafchi, A.; Oladzadabbasabadi, N.; Ariffin, F.; Ghalambor, P.; Jafarzadeh, S.; Al-Hassan, A.A. Fabrication and characterization of a pH-sensitive intelligent film incorporating dragon fruit skin extract. Food Sci. Nutr. 2022, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Pramitasari, R.; Gunawicahya, L.N.; Anugrah, D.S.B. Development of an indicator film based on cassava starch–chitosan incorporated with red dragon fruit peel anthocyanin extract. Polymers 2022, 14, 4142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Y.; Zhao, L.; Wang, Y. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. J. Agric. Food Res. 2022, 9, 100340. [Google Scholar] [CrossRef]
- Pramitasari, R.; Marcel; Lestari, D. Co-pigmentation with catechin derived from Indonesian gambier increases the stability of black rice anthocyanin in isotonic sports drinks during one-month storage in 4 °C. Food Res. 2022, 6, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Rawdkuen, S.; Fasha, A.; Benjakul, S.; Kaewprachu, P. Application of anthocyanin as a color indicator in gelatin films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Jampani, C.; Raghavarao, K.S.M.S. Process integration for purification and concentration of red cabbage (Brassica Oleracea L.) anthocyanins. Sep. Purif. Technol. 2015, 141, 10–16. [Google Scholar] [CrossRef]
- Tan, C.; Celli, G.B.; Selig, M.J.; Abbaspourrad, A. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chem. 2018, 264, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.W. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr. Polym. 2018, 193, 144–152. [Google Scholar] [CrossRef]
- Bilgic, S.; Söğüt, E.; Seydim, A.C. Chitosan and starch based intelligent films with anthocyanins from eggplant to monitor pH variations. Turk. JAF Sci.Technol. 2019, 7, 61–66. [Google Scholar] [CrossRef]
- Gonzalez, C.M.O.; Schelegueda, L.I.; Ruiz-Henestrosa, V.M.P.; Campos, C.A.; Basanta, M.F.; Gerschenson, L.N. Cassava starch films with anthocyanins and betalains from agroindustrial by-products: Their use for intelligent label development. Foods 2022, 11, 3361. [Google Scholar] [CrossRef] [PubMed]
- López-Fandiño, R.; Otte, J.; Van Camp, J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ace-Inhibitory activity. Int. Dairy J. 2006, 16, 1277–1293. [Google Scholar] [CrossRef]
- Iskandar, A.; Yuliasih, I.; Warsiki, E. Performance improvement of fruit ripeness smart label based on ammonium molybdate color indicators. Indones. Food Sci. Technol. J. 2020, 3, 48–57. [Google Scholar] [CrossRef]
- Liu, W. Stepwise tests when test statistics are independent. Aust. J. Stat. 1997, 39, 169–177. [Google Scholar] [CrossRef]
- Apriliyani, M.W.; Purwadi, P.; Manab, A.; Ikhwan, A.D. Characteristics of moisture content, swelling, opacity and transparency with the addition of chitosan as edible films/coating base on casein. Adv. J. Food Sci. Technol. 2020, 18, 9–14. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Lou, L.; Chen, Y.; Ye, X.; Chen, J. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Sci. Nutr. 2020, 8, 3234–3242. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.; Demirci, K.; Görgüç, A.; Yılmaz, F. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr. Plant Biol. 2022, 29, 100238. [Google Scholar] [CrossRef]
- Teixeira, N.; Cruz, L.; Brás, N.F.; Matthew, N.; Ramos, M.J.; de Freitas, V. Structural features of copigmentation of oenin with different polyphenol copigments. J. Agric. Food Chem. 2013, 61, 6942–6948. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef]
- Escribano, T.; Santos Buelga, C. Anthocyanin copigmentation—Evaluation, mechanisms and implications for the color of red wines. Curr. Org. Chem. 2012, 16, 715–723. [Google Scholar]
- Santoso, B.; Marsega, A.; Priyanto, G.; Pambanyun, R. Improvement of physical, chemical and antibacterial characteristics of edible film based on Canna edulis Kerr. starch. Agritech 2017, 36, 378. [Google Scholar] [CrossRef]
- Patil, P.; Pawar, S. Wound dressing applications of nano-biofilms. In Biopolymer-Based Nano Films for Applications in Food Packaging and Wound Healing; Elsevier: Baramati, India, 2021; pp. 247–268. [Google Scholar]
- Chen, N.; Gao, H.-X.; Hey, Q.; Zeng, W.C. Potato starch-based film incorporated with tea polyphenols and its application in fruit packaging. Polymers 2023, 15, 588. [Google Scholar] [CrossRef] [PubMed]
- Quader, F.; Khan, R.; Islam, M.A.; Saha, S.; Nazira Sharmin, K. Development and characterization of a biodegradable colored film based on starch and chitosan by using Acacia catechu. J. Environ. Sci. Nat. Resour. 2015, 8, 123–130. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, T.; Hey, F.; Ou, Z.; Xu, J.; Ren, L. Preparation and characterization of functional films based on chitosan and corn starch incorporated tea polyphenols. Coatings 2021, 11, 817. [Google Scholar] [CrossRef]
- Ku, K.J.; Hong, Y.H.; Song, K.B. Mechanical properties of a Gelidium corneum edible film containing catechin and its application in sausages. J. Food Sci. 2008, 73, C217–C221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Yong, H.; Qin, Y.; Liu, J.; Liu, J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019, 94, 80–92. [Google Scholar] [CrossRef]
- Anggraini, T.; Tai, A.; Yoshino, T.; Itani, T. Antioxidative activity and catechin content of four kinds of Uncaria gambier extracts from West Sumatra, Indonesia. Afr. J. Biochem. Res. 2011, 5, 33–38. [Google Scholar]
- Fadhilah, Z.H.; Prime, F.; Syamsudin, R.A.M.R. Review: Telaah kandungan senyawa katekin dan epigalokatekin galat (EGCG) sebagai antioksidan pada berbagai jenis the. J. Pharmascience 2021, 8, 31–44. [Google Scholar] [CrossRef]
- Ardiyansyah; Kurnianto, M.F.; Poerwanto, B.; Wahyono, A.; Apriliyanti, M.W.; Lestari, I.P. Monitoring of banana deteriorations using intelligent-packaging containing brazilian extract (Caesalpina Sappan L.). IOP Conf. Ser. Earth Environ. Sci. 2020, 411, 012043. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Pu, Y.; Chen, S.; Liu, L.; Cui, Z.; Zhong, Y. Recent advances in pH-responsive freshness indicators using natural food colorants to monitor food freshness. Foods 2022, 11, 1884. [Google Scholar] [CrossRef] [PubMed]
Sample | Anthocyanins:Gambier Catechins (w/w) |
---|---|
SCh–A | 1:0 |
SCh–AC20 | 1:20 |
SCh–AC28 | 1:28 |
SCh–AC40 | 1:40 |
Composition | Amount (mL) |
---|---|
1% (w/v) chitosan solution | 7.46 |
2% (w/v) cassava starch solution | 7.46 |
85% glycerol | 0.08 |
Color extract | 5 |
Sample | 1st Day | 14th Day | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | ΔE | |
SCh–A | 32.50 ± 1.10 a | 35.62 ± 3.51 a | 14.45 ± 3.25 a | 34.87 ± 1.65 bc | 38.59 ± 1.10 b | 19.36 ± 2.14 b | 8.09 ± 5.29 a |
SCh–AC20 | 34.13 ± 2.16 a | 41.16 ± 6.73 a | 12.25 ± 3.02 a | 36.51 ± 0.86 c | 39.51 ± 0.90 b | 19.25 ± 0.92 b | 7.83 ± 1.90 a |
SCh–AC28 | 34.99 ± 0.65 a | 39.92 ± 4.14 a | 15.1 ± 1.65 a | 32.83 ± 0.20 ab | 37.29 ± 0.12 b | 14.72 ± 0.09 a | 4.43 ± 3.34 a |
SCh–AC40 | 31.67 ± 0.16 a | 33.32 ± 0.28 a | 11.07 ± 0.21 a | 31.41 ± 0.22 a | 31.09 ± 0.63 a | 11.46 ± 0.42 a | 2.33 ± 0.57 a |
Films | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
SCh–A | 0.13 ± 0.00 a | 0.19 ± 0.02 b | 2.22 ± 0.35 b |
SCh–AC20 | 0.15 ± 0.01 b | 0.12 ± 0.03 a | 1.29 ± 0.01 a |
SCh–AC28 | 0.15 ± 0.00 b | 0.12 ± 0.01 a | 1.42 ± 0.24 a |
SCh–AC40 | 0.14 ± 0.00 ab | 0.23 ± 0.02 b | 4.88 ± 0.27 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoso, V.R.; Pramitasari, R.; Anugrah, D.S.B. Development of Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins–Gambier Catechins to Detect Banana Ripeness. Polymers 2023, 15, 3609. https://doi.org/10.3390/polym15173609
Santoso VR, Pramitasari R, Anugrah DSB. Development of Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins–Gambier Catechins to Detect Banana Ripeness. Polymers. 2023; 15(17):3609. https://doi.org/10.3390/polym15173609
Chicago/Turabian StyleSantoso, Valentia Rossely, Rianita Pramitasari, and Daru Seto Bagus Anugrah. 2023. "Development of Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins–Gambier Catechins to Detect Banana Ripeness" Polymers 15, no. 17: 3609. https://doi.org/10.3390/polym15173609
APA StyleSantoso, V. R., Pramitasari, R., & Anugrah, D. S. B. (2023). Development of Indicator Film Based on Cassava Starch–Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins–Gambier Catechins to Detect Banana Ripeness. Polymers, 15(17), 3609. https://doi.org/10.3390/polym15173609