Development of Sustainable and Active Food Packaging Materials Composed by Chitosan, Polyvinyl Alcohol and Quercetin Functionalized Layered Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of QUE-Functionalized LDHs (QUE-LDHs)
2.3. Preparation of QUE-LDHs/CS/PVA Nanocomposite Active Films
3. Results and Discussion
3.1. Chemical Structure of QUE-LDHs
3.2. Microscopic Morphology of QUE-LDHs
3.3. Antibacterial Activity of QUE-LDHs
3.4. Chemical Structure of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.5. Thermal Stability of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.6. Thermal and Crystalline Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.7. Mechanical Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.8. Optical Properties of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.9. Antibacterial Activity of QUE-LDHs/CS/PVA Nanocomposite Active Films
3.10. Antioxidant Activity of QUE-LDHs/CS/PVA Nanocomposite Active Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mohamad, N.; Mazlan, M.M.; Tawakkal, I.S.M.A.; Talib, R.A.; Kian, L.K.; Jawaid, M. Characterization of Active Polybutylene Succinate Films Filled Essential Oils for Food Packaging Application. J. Polym. Environ. 2022, 30, 585–596. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef]
- Lai, W.; Wong, W. Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int. J. Mol. Sci. 2022, 23, 6295. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Kim, J.T.; Rhim, J.W.; Nandi, D.; Parameswaranpillai, J.; Siengchin, S. Recent innovations in bionanocomposites-based food packaging films—A comprehensive review. Food Packag. Shelf. 2022, 33, 100877. [Google Scholar] [CrossRef]
- Panda, P.K.; Dash, P.; Yang, J.; Chang, Y. Development of chitosan, graphene oxide, and cerium oxide composite blended films: Structural, physical, and functional properties. Cellulose 2022, 29, 2399–2411. [Google Scholar] [CrossRef]
- Flórez, M.; Guerra-Rodríguez, E.; Cazón, P.; Vázquez, M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloid. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Menazea, A.A.; Ismail, A.M. Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus sabdariffa L. extract. J. Mol. Struct. 2019, 1197, 603–609. [Google Scholar] [CrossRef]
- Chenwei, C.; Zhipeng, T.; Yarui, M.; Weiqiang, Q.; Fuxin, Y.; Jun, M.; Jing, X. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Prog. Org. Coat. 2018, 123, 176–184. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Yang, W.; Fortunati, E.; Bertoglio, F.; Owczarek, J.S.; Bruni, G.; Kozanecki, M.; Kenny, J.M.; Torre, L.; Visai, L.; Puglia, D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohyd. Polym. 2018, 181, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ooi, C.W.; Song, C.P.; Wang, C.; Liu, B.; Lin, G.; Chiu, C.; Chang, Y. Antibacterial efficacy of quaternized chitosan/poly (vinyl alcohol) nanofiber membrane crosslinked with blocked diisocyanate. Carbohyd. Polym. 2021, 262, 117910. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. Heliyon 2021, 7, e6550. [Google Scholar]
- Haghighi, H.; Leugoue, S.K.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Fava, P.; Pulvirenti, A. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloid. 2020, 100, 105419. [Google Scholar] [CrossRef]
- Amalraj, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int. J. Biol. Macromol. 2020, 151, 366–375. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. F 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Mohi-Alden, K.; Omid, M. A critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Int. 2021, 141, 110113. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Filippidi, E.; Cristiani, T.R.; Eisenbach, C.D.; Waite, J.H.; Israelachvili, J.N.; Ahn, B.K.; Valentine, M.T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, C.; Yao, J.; Lin, Y.; Liao, X.; Lu, J. Design and fabrication of anthocyanin functionalized layered clay/poly(vinyl alcohol) coatings on poly(lactic acid) film for active food packaging. Food Packag. Shelf. 2023, 35, 101007. [Google Scholar] [CrossRef]
- Mao, L.; Wu, H.; Liu, Y.; Yao, J.; Bai, Y. Enhanced mechanical and gas barrier properties of poly(ε-caprolactone) nanocomposites filled with tannic acid-Fe(III) functionalized high aspect ratio layered double hydroxides. Mater. Chem. Phys. 2018, 211, 501–509. [Google Scholar] [CrossRef]
- Luzi, F.; Pannucci, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R.; Puglia, D. Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers 2019, 11, 1999. [Google Scholar] [CrossRef]
- Lei, Y.; Mao, L.; Yao, J.; Zhu, H. Improved mechanical, antibacterial and UV barrier properties of catechol-functionalized chitosan/polyvinyl alcohol biodegradable composites for active food packaging. Carbohyd. Polym. 2021, 264, 117997. [Google Scholar] [CrossRef]
- de Barros Vinhal, G.L.R.R.; Silva-Pereira, M.C.; Teixeira, J.A.; Barcia, M.T.; Pertuzatti, P.B.; Stefani, R. Gelatine/PVA copolymer film incorporated with quercetin as a prototype to active antioxidant packaging. J. Food Sci. Technol. 2021, 58, 3924–3932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, P.; Xue, J.; Zhao, W.; Wu, D. Complexing Reactions of Quercetin with Cu(II) and Al(III) Studied by UV-vis Absorption Spectroscopy. J. Light Scatt. 2009, 21, 174–177. [Google Scholar]
- Ji, J. XPS Study on Cu2+-Chitosan Chelate and Adsorption Mechanism of Chitosan for Cu2+. Chin. J. Appl. Chem. 2000, 17, 115–116. [Google Scholar]
- Aytac, Z.; Ipek, S.; Durgun, E.; Uyar, T. Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. J. Mater. Sci. 2018, 53, 1527–1539. [Google Scholar] [CrossRef]
- He, Y.; Zhu, B.; Inoue, Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci. 2004, 29, 1021–1051. [Google Scholar] [CrossRef]
- Lan, W.; Zhang, R.; Ahmed, S.; Qin, W.; Liu, Y. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT-Food Sci. Technol. 2019, 113, 108297. [Google Scholar] [CrossRef]
- Mao, L.; Liu, Y.; Wu, H.; Chen, J.; Yao, J. Poly(ε-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide: Simultaneous enhancement of mechanical and barrier properties. Appl. Clay Sci. 2017, 150, 202–209. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Nagendra, B.; Das, A.; Leuteritz, A.; Gowd, E.B. Structure and crystallization behaviour of syndiotactic polystyrene/layered double hydroxide nanocomposites. Polym. Int. 2016, 65, 299–307. [Google Scholar] [CrossRef]
- Qiu, L.; Gao, Y.; Lu, P.; O’Hare, D.; Wang, Q. Synthesis and properties of polypropylene/layered double hydroxide nanocomposites with different LDHs particle sizes. J. Appl. Polym. Sci. 2018, 135, 46204. [Google Scholar] [CrossRef]
- Ramaraj, B.; Nayak, S.K.; Yoon, K.R. Poly(vinyl alcohol) and layered double hydroxide composites: Thermal and mechanical properties. J. Appl. Polym. Sci. 2010, 116, 1671–1677. [Google Scholar] [CrossRef]
- Ghaderi, J.; Hosseini, S.F.; Keyvani, N.; Gómez-Guillén, M.C. Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloid. 2019, 95, 122–132. [Google Scholar] [CrossRef]
- Yao, J.; Mao, L.; Wang, C.; Liu, X.; Liu, Y. Development of chitosan/poly (vinyl alcohol) active films reinforced with curcumin functionalized layered clay towards food packaging. Prog. Org. Coat. 2023, 182, 107674. [Google Scholar] [CrossRef]
- Bian, J.; Han, L.; Wang, X.; Wen, X.; Han, C.; Wang, S.; Dong, L. Nonisothermal crystallization behavior and mechanical properties of poly(butylene succinate)/silica nanocomposites. J. Appl. Polym. Sci. 2010, 116, 902–912. [Google Scholar] [CrossRef]
- Valente, J.S.; Sánchez-Cantú, M.; Lima, E.; Figueras, F. Method for Large-Scale Production of Multimetallic Layered Double Hydroxides: Formation Mechanism Discernment. Chem. Mater. 2009, 21, 5809–5818. [Google Scholar] [CrossRef]
- Balavairavan, B.; Saravanakumar, S.S. Characterization of Ecofriendly Poly(vinyl alcohol) and Green Banana Peel Filler (GBPF) Reinforced Bio-Films. J. Polym. Environ. 2021, 29, 2756–2771. [Google Scholar] [CrossRef]
- Shokuhi Rad, A.; Ebrahimi, D. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation. Mech. Compos. Mater. 2017, 53, 373–380. [Google Scholar] [CrossRef]
- Marangoni, R.; Gardolinski, J.E.F.D.; Mikowski, A.; Wypych, F. PVA nanocomposites reinforced with Zn2Al LDHs, intercalated with orange dyes. J. Solid State Electr. 2011, 15, 303–311. [Google Scholar] [CrossRef]
- Hajji, S.; Chaker, A.; Jridi, M.; Maalej, H.; Jellouli, K.; Boufi, S.; Nasri, M. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly(vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. 2016, 23, 15310–15320. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, S.; Agyei, D.; Ali, A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag. Shelf. 2022, 34, 100962. [Google Scholar] [CrossRef]
- Yu, J.; Wei, D.; Li, S.; Tang, Q.; Li, H.; Zhang, Z.; Hu, W.; Zou, Z. High-performance multifunctional polyvinyl alcohol/starch based active packaging films compatibilized with bioinspired polydopamine nanoparticles. Int. J. Biol. Macromol. 2022, 210, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Babaei-Ghazvini, A.; Acharya, B.; Korber, D.R. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers 2021, 13, 2790. [Google Scholar] [CrossRef] [PubMed]
- Vidal, O.L.; Barros Santos, M.C.; Batista, A.P.; Andrigo, F.F.; Baréa, B.; Lecomte, J.; Figueroa-Espinoza, M.C.; Gontard, N.; Villeneuve, P.; Guillard, V.; et al. Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. J. Food Eng. 2022, 312, 110744. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Dugo, L.; Fanali, C.; Tripodo, G.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R. Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of PVA-based films for active food packaging. Polym. Int. 2016, 65, 872–882. [Google Scholar] [CrossRef]
- Dai, W.; Sun, Q.; Deng, J.; Wu, D.; Sun, Y. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2. Appl. Surf. Sci. 2001, 177, 172–179. [Google Scholar] [CrossRef]
- Bai, Y.; Li, Y.; Wang, E.; Wang, X.; Lu, Y.; Xu, L. A novel reduced α-Keggin type polyoxometalate coordinated to two and a half copper complex moieties: [Cu(2,2′-bipy)2][PMoVI8MoV4O40{Cu(2,2′-bipy)}2.5]·H2O. J. Mol. Struct. 2005, 752, 54–59. [Google Scholar] [CrossRef]
Samples | PVA/g | CS/g | QUE-LDHs/g | QUE-LDHs/wt% |
---|---|---|---|---|
CS/PVA | 0.63 | 0.07 | 0 | 0 |
LQCP-0.5% | 0.63 | 0.07 | 0.0035 | 0.5% |
LQCP-1% | 0.63 | 0.07 | 0.0071 | 1% |
LQCP-3% | 0.63 | 0.07 | 0.0216 | 3% |
LQCP-5% | 0.63 | 0.07 | 0.0368 | 5% |
LQCP-7% | 0.63 | 0.07 | 0.0526 | 7% |
Sample | T−5%/°C | T−50%/°C | Tg/°C | Tm/°C | Tc/°C | ΔHm/(J/g) | χ/% |
---|---|---|---|---|---|---|---|
CS/PVA | 86.6 | 377.3 | 78.1 | 186.7 | 156.6 | 23.56 | 16.1% |
LQCP-0.5% | 87.3 | 356.5 | 81.5 | 189.5 | 154.5 | 29.40 | 20.1% |
LQCP-1% | 92.9 | 355.2 | 81.8 | 191.4 | 157.6 | 29.69 | 20.4% |
LQCP-3% | 95.8 | 355.6 | 81.3 | 190.4 | 156.6 | 28.21 | 19.8% |
LQCP-5% | 101.6 | 351.4 | 79.7 | 199.1 | 166.9 | 30.11 | 21.6% |
LQCP-7% | 90.6 | 345.7 | 79.8 | 204.5 | 173.5 | 27.50 | 20.2% |
Sample | T280/% 1 | T400/% 1 | T600/% 1 | Thickness/mm | Abs600 2 | Opacity | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|---|---|---|
CS/PVA | 25.3 | 53.2 | 70.5 | 0.091 | 0.152 | 1.670 | 81.9 ± 0.1 | 1.9 ± 0.2 | 15.7 ± 0.2 | 21.6 ± 0.4 |
LQCP-0.5% | 0.6 | 11.3 | 60.8 | 0.073 | 0.216 | 2.959 | 76.8 ± 0.2 | 6.0 ± 0.1 | 40.4 ± 0.4 | 45.4 ± 0.3 |
LQCP-1% | 0.1 | 2.9 | 50.1 | 0.071 | 0.300 | 4.225 | 73.4 ± 0.1 | 6.9 ± 0.3 | 42.2 ± 0.2 | 46.9 ± 0.3 |
LQCP-3% | 0 | 2.0 | 47.3 | 0.075 | 0.325 | 4.333 | 56.5 ± 0.2 | 21.0 ± 0.4 | 48.5 ± 0.4 | 66.4 ± 0.5 |
LQCP-5% | 0 | 1.7 | 44.0 | 0.072 | 0.357 | 4.958 | 55.8 ± 0.3 | 26.0 ± 0.5 | 52.2 ± 0.6 | 71.3 ± 0.5 |
LQCP-7% | 0 | 0.20 | 27.7 | 0.075 | 0.558 | 7.440 | 41.0 ± 0.5 | 24.6 ± 0.3 | 59.3 ± 0.2 | 84.8 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Mao, L.; Zheng, B.; Liu, Y.; Yao, J.; Zhu, H. Development of Sustainable and Active Food Packaging Materials Composed by Chitosan, Polyvinyl Alcohol and Quercetin Functionalized Layered Clay. Polymers 2024, 16, 727. https://doi.org/10.3390/polym16060727
Wang C, Mao L, Zheng B, Liu Y, Yao J, Zhu H. Development of Sustainable and Active Food Packaging Materials Composed by Chitosan, Polyvinyl Alcohol and Quercetin Functionalized Layered Clay. Polymers. 2024; 16(6):727. https://doi.org/10.3390/polym16060727
Chicago/Turabian StyleWang, Chengyu, Long Mao, Bowen Zheng, Yujie Liu, Jin Yao, and Heping Zhu. 2024. "Development of Sustainable and Active Food Packaging Materials Composed by Chitosan, Polyvinyl Alcohol and Quercetin Functionalized Layered Clay" Polymers 16, no. 6: 727. https://doi.org/10.3390/polym16060727
APA StyleWang, C., Mao, L., Zheng, B., Liu, Y., Yao, J., & Zhu, H. (2024). Development of Sustainable and Active Food Packaging Materials Composed by Chitosan, Polyvinyl Alcohol and Quercetin Functionalized Layered Clay. Polymers, 16(6), 727. https://doi.org/10.3390/polym16060727