Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrochromic Gel
2.3. Fabrication of the Electrochromic Device
2.4. Characterization of the Electrochromic Device
3. Results and Discussion
3.1. Cyclic Voltammetry
3.2. Micro-Raman Spectroscopy
3.3. UV-Vis-NIR Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moser, M.L.; Li, G.; Chen, M.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Fast Electrochromic Device Based on Single-Walled Carbon Nanotube Thin Films. Nano Lett. 2016, 16, 5386–5393. [Google Scholar] [CrossRef] [PubMed]
- Faure, C.; Guerfi, A.; Dontigny, M.; Clément, D.; Hovington, P.; Posset, U.; Zaghib, K. High Cycling Stability of Electrochromic Devices Using a Metallic Counter Electrode. Electrochim. Acta 2016, 214, 313–318. [Google Scholar] [CrossRef]
- Granqvist, C. Electrochromism and smart window design. Solid State Ion. 1992, 53–56, 479–489. [Google Scholar] [CrossRef]
- Mortimer, R.J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971–2981. [Google Scholar] [CrossRef]
- RMortimer, R.J. Electrochromic Materials. Annu. Rev. Mater. Res. 2011, 41, 241–268. [Google Scholar] [CrossRef]
- Shah, K.W.; Wang, S.-X.; Soo, D.X.Y.; Xu, J.W. Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers 2019, 11, 1839. [Google Scholar] [CrossRef] [Green Version]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Tungsten and Titanium oxide thin films obtained by sol-gel process as electrodes in Electrochromic Device. Front. Mater. 2022, 9, 912013. [Google Scholar] [CrossRef]
- Ming, S.; Li, Z.; Zhen, S.; Liu, P.; Jiang, F.; Nie, G.; Xu, J. High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572. [Google Scholar] [CrossRef]
- Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic Conjugated Polymers for Multifunctional Smart Windows with Integrative Functionalities. Adv. Mater. Technol. 2020, 5, 1900890. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; et al. Low-Cost Fabrication of High-Performance Fluorinated Polythiophene-Based Vis–NIR Electrochromic Devices toward Deformable Display and Camouflage. Chem. Mater. 2022, 34, 9923–9933. [Google Scholar] [CrossRef]
- Wang, X.; Gui, L.; Luo, X.; Cao, J.; Song, M.; Bai, J.; Wang, W.; Zhang, Z.; Zhou, S.; Wang, L.; et al. Synthesis of novel fluorobenzene-thiophene hybrid polymer for high-performance electrochromic devices. Electrochim. Acta 2023, 462, 142736. [Google Scholar] [CrossRef]
- Kim, J.; In, Y.R.; Phan, T.N.-L.; Kim, Y.M.; Ha, J.-W.; Yoon, S.C.; Kim, B.J.; Moon, H.C. Design of Dithienopyran-Based Conjugated Polymers for High-Performance Electrochromic Devices. Chem. Mater. 2023, 35, 792–800. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Z.; Guo, S.; Ma, D.; Wang, J. Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells 2023, 256, 112310. [Google Scholar] [CrossRef]
- Pham, N.S.; Nguyen, L.T.; Nguyen, H.T.; Nguyen, A.Q.K. A complementary electrochromic device based on Prussian Blue and Tungsten Trioxide: The influence of switching time operation on high performance and long-term stability. Mater. Lett. 2023, 343, 134356. [Google Scholar] [CrossRef]
- Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K.-C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 2019, 7, 4622–4637. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Chen, C.-S.; Yeh, T.-H. Organic multiviologen electrochromic cells for a color electronic display application. J. Appl. Polym. Sci. 2014, 131, 40485. [Google Scholar] [CrossRef]
- Palenzuela, J.; Viñuales, A.; Odriozola, I.; Cabañero, G.; Grande, H.J.; Ruiz, V. Flexible Viologen Electrochromic Devices with Low Operational Voltages Using Reduced Graphene Oxide Electrodes. ACS Appl. Mater. Interfaces 2014, 6, 14562–14567. [Google Scholar] [CrossRef]
- Striepe, L.; Baumgartner, T. Viologens and Their Application as Functional Materials. Chem. Eur. J. 2017, 23, 16924–16940. [Google Scholar] [CrossRef]
- Jordão, N.; Cabrita, L.; Pina, F.; Branco, L.C. Novel Bipyridinium Ionic Liquids as Liquid Electrochromic Devices. Chem. Eur. J. 2014, 20, 3982–3988. [Google Scholar] [CrossRef]
- Lu, H.-C.; Kao, S.-Y.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 2016, 147, 75–84. [Google Scholar] [CrossRef]
- Gélinas, B.; Das, D.; Rochefort, D. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids. ACS Appl. Mater. Interfaces 2017, 9, 28726–28736. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Pathak, D.K.; Mishra, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Polythiophene -viologen bilayer for electro-trichromic device. Sol. Energy Mater. Sol. Cells 2018, 188, 249–254. [Google Scholar] [CrossRef]
- Kim, S.M.; Jang, J.H.; Kim, K.K.; Park, H.K.; Bae, J.J.; Yu, W.J.; Lee, I.H.; Kim, G.; Loc, D.D.; Kim, U.J.; et al. Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 327–331. [Google Scholar] [CrossRef]
- Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T. Redox-Switching in a Viologen-type Adlayer: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study on Au(111)-(1×1) Single Crystal Electrodes. ACS Nano 2011, 5, 5662–5672. [Google Scholar] [CrossRef]
- Deepa, M.; Awadhia, A.; Bhandari, S. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film. Phys. Chem. Chem. Phys. 2009, 11, 5674–5685. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Pandey, H.; Yogi, P.; Saxena, S.K.; Roy, S.; Sagdeo, P.; Kumar, R. Live spectroscopy to observe electrochromism in viologen based solid state device. Solid State Commun. 2017, 261, 17–20. [Google Scholar] [CrossRef]
- Han, F.S.; Higuchi, M.; Kurth, D.G. Metallo-Supramolecular Polymers Based on Functionalized Bis-terpyridines as Novel Electrochromic Materials. Adv. Mater. 2007, 19, 3928–3931. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Kayaku Advanced Materials, KAM-SU-8-2000-2000.5-2015-Datasheet-8.13.20-Final.pdf. Available online: https://kayakuam.com/wp-content/uploads/2020/08/KAM-SU-8-2000-2000.5-2015-Datasheet-8.13.20-final.pdf (accessed on 22 May 2023).
- Grimaldi, I.; Gerace, T.; Pipita, M.; Perrotta, I.; Ciuchi, F.; Berger, H.; Papagno, M.; Castriota, M.; Pacilé, D. Structural investigation of InSe layered semiconductors. Solid State Commun. 2020, 311, 113855. [Google Scholar] [CrossRef]
- Rizzuto, C.; Teeters, D.C.; Barberi, R.C.; Castriota, M. Plasticizers and Salt Concentrations Effects on Polymer Gel Electrolytes Based on Poly (Methyl Methacrylate) for Electrochemical Applications. Gels 2022, 8, 363. [Google Scholar] [CrossRef]
- Politano, G.G.; Castriota, M.; De Santo, M.P.; Pipita, M.M.; Desiderio, G.; Vena, C.; Versace, C. Variable angle spectroscopic ellipsometry characterization of spin-coated MoS2 films. Vacuum 2021, 189, 110232. [Google Scholar] [CrossRef]
- Coppedè, N.; Castriota, M.; Cazzanelli, E.; Forti, S.; Tarabella, G.; Toccoli, T.; Walzer, K.; Iannotta, S. Controlled Polymorphism in Titanyl Phthalocyanine on Mica by Hyperthermal Beams: A Micro-Raman Analysis. J. Phys. Chem. C 2010, 114, 7038–7044. [Google Scholar] [CrossRef]
- Cazzanelli, E.; De Luca, O.; Vuono, D.; Policicchio, A.; Castriota, M.; Desiderio, G.; De Santo, M.P.; Aloise, A.; Fasanella, A.; Rugiero, T.; et al. Characterization of graphene grown on copper foil by chemical vapor deposition (CVD) at ambient pressure conditions. J. Raman Spectrosc. 2018, 49, 1006–1014. [Google Scholar] [CrossRef]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- Rafailov, P.M.; Thomsen, C.; Monev, M.; Dettlaff-Weglikowska, U.; Roth, S. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy. Phys. Status Solidi B 2008, 245, 1967–1970. [Google Scholar] [CrossRef]
- De Luca, O.; Grillo, R.; Castriota, M.; Policicchio, A.; De Santo, M.P.; Desiderio, G.; Fasanella, A.; Agostino, R.G.; Cazzanelli, E.; Giarola, M.; et al. Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil. Appl. Surf. Sci. 2018, 458, 580–585. [Google Scholar] [CrossRef]
- Petrov, M.; Katranchev, B.; Rafailov, P.M.; Naradikian, H.; Dettlaff-Weglikowska, U.; Keskinova, E. Smectic C liquid crystal growth and memory effect through surface orientation by carbon nanotubes. J. Mol. Liq. 2013, 180, 215–220. [Google Scholar] [CrossRef]
- Policastro, D.; Giorno, E.; Scarpelli, F.; Godbert, N.; Ricciardi, L.; Crispini, A.; Candreva, A.; Marchetti, F.; Xhafa, S.; De Rose, R.; et al. New Zinc-Based Active Chitosan Films: Physicochemical Characterization, Antioxidant, and Antimicrobial Properties. Front. Chem. 2022, 10, 884059. [Google Scholar] [CrossRef]
- Candreva, A.; Crea, R.; Nucera, A.; Barberi, R.C.; Castriota, M.; La Deda, M. Fibronectin-derived protein forms a protein corona on gold nanoparticles: Synthesis, Raman and optical properties of a new plasmonic nanocarrier. J. Mater. Sci. 2023, 58, 9618–9632. [Google Scholar] [CrossRef]
- Fasanella, A.; Cosentino, K.; Beneduci, A.; Chidichimo, G.; Cazzanelli, E.; Barberi, R.; Castriota, M. Thermal structural evolutions of DMPC-water biomimetic systems investigated by Raman Spectroscopy. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 1253–1258. [Google Scholar] [CrossRef]
- Nucera, A.; Grillo, R.; Rizzuto, C.; Barberi, R.C.; Castriota, M.; Bürgi, T.; Caputo, R.; Palermo, G. Effect of the Combination of Gold Nanoparticles and Polyelectrolyte Layers on SERS Measurements. Biosensors 2022, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Candreva, A.; Di Maio, G.; Parisi, F.; Scarpelli, F.; Crispini, A.; Godbert, N.; Ricciardi, L.; Nucera, A.; Rizzuto, C.; Barberi, R.C.; et al. Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. Chemosensors 2022, 10, 176. [Google Scholar] [CrossRef]
- Ma, T.; Liu, L.; Wang, J.; Lu, Y.; Chen, J. Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angew. Chem. 2020, 132, 11630–11636. [Google Scholar] [CrossRef]
- Lu, T.; Cotton, T.M.; Hurst, J.K.; Thompson, D.H.P. A Raman and surface-enhanced Raman study of asymmetrically substituted viologens. J. Phys. Chem. 1988, 92, 6978–6985. [Google Scholar] [CrossRef]
- Tang, X.; Schneider, T.; Buttry, D.A. A Vibrational Spectroscopic Study of the Structure of Electroactive Self-Assembled Monolayers of Viologen Derivatives. Langmuir 1994, 10, 2235–2240. [Google Scholar] [CrossRef]
- Mishra, S.; Yogi, P.; Chaudhary, A.; Pathak, D.K.; Saxena, S.K.; Krylov, A.S.; Sagdeo, P.R.; Kumar, R. Understanding perceived color through gradual spectroscopic variations in electrochromism. Indian J. Phys. 2019, 93, 927–933. [Google Scholar] [CrossRef]
- Bishop, J.L.; Quinn, R.; Dyar, M.D. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Miner. 2014, 99, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Castellucci, E.; Angeloni, L.; Neto, N.; Sbrana, G. IR and Raman spectra of A 2,2′-bipyridine single crystal: Internal modes. Chem. Phys. 1979, 43, 365–373. [Google Scholar] [CrossRef]
- Holló, B.B.; Petruševski, V.M.; Kovács, G.B.; Franguelli, F.P.; Farkas, A.; Menyhárd, A.; Lendvay, G.; Sajó, I.E.; Nagy-Bereczki, L.; Pawar, R.P.; et al. Thermal and spectroscopic studies on a double-salt-type pyridine–silver perchlorate complex having κ1-O coordinated perchlorate ions. J. Therm. Anal. Calorim. 2019, 138, 1193–1205. [Google Scholar] [CrossRef] [Green Version]
- Forster, M.; Girling, R.B.; Hester, R.E. Infrared, Raman and resonance Raman investigations of methylviologen and its radical cation. J. Raman Spectrosc. 1982, 12, 36–48. [Google Scholar] [CrossRef]
- Mishra, S.; Pandey, H.; Yogi, P.; Saxena, S.K.; Roy, S.; Sagdeo, P.R.; Kumar, R. Interfacial redox centers as origin of color switching in organic electrochromic device. Opt. Mater. 2017, 66, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Cotton, T.M. In situ Raman spectra of the three redox forms of heptylviologen at platinum and silver electrodes: Counterion effects. J. Phys. Chem. 1987, 91, 5978–5985. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.M.; Moon, H.C. Asymmetric molecular modification of viologens for highly stable electrochromic devices. RSC Adv. 2020, 10, 394–401. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, X.; Zhang, P.; Liu, Y.; Qi, H.; Zhang, P.; Kaiser, U.; Reineke, S.; Dong, R.; Feng, X. Viologen-Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solar-Powered Smart Window. Adv. Mater. 2022, 34, 2106073. [Google Scholar] [CrossRef] [PubMed]
- Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless to Neutral Color Electrochromic Devices Based on Asymmetric Viologens. ACS Appl. Mater. Interfaces 2016, 8, 29619–29627. [Google Scholar] [CrossRef]
- Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C. Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Sol. Energy Mater. Sol. Cells 2018, 177, 75–81. [Google Scholar] [CrossRef]
Raman Shift (cm−1) | Assignments | Raman Shift (cm−1) | Assignments |
---|---|---|---|
456 | ClO4− symmetric bending | 1299 | C-C inter-ring vibration + H-C-C inter-ring bending |
626 | ClO4− asymmetric bending | 1355 | C-C inter-ring vibration |
657 | N-CH2CH3 stretching | 1394 | CH3 out-of-plane-bending |
748 | C-H out-of-plane vibration | 1445 | C-H asymmetric bending |
801 | C-N ring stretching | 1483 | C-H vibration |
828 | C-C and -N-H stretching (pyridine group) | 1545 | H-C-C bending + C-N stretching |
913 | Cl-O symmetric stretching | 1655 | C-C inner ring vibration |
936 | Cl-O symmetric stretching | 2882 | C-H asymmetric stretching |
972 | Out-of-plane of ring | 2894 | CH2 asymmetric stretching |
1064 | C-N and C-C stretching (ring breathing vibration)/asymmetric stretching Cl-O) | 2930 | C-H symmetric stretching of CH2 |
1089 | Cl-O asymmetric stretching | 2952 | C-H symmetric stretching |
1158 | Cl-O asymmetric stretching | 3002 | C-H stretching of CH3 |
1180 | N-CH2CH3 stretching | 3010 | Combination of 1655 cm−1 + 1355 cm−1 |
1237 | H-C-C in-plane bending | 3080 | Aromatic C-H stretching |
1248 | H-C-C in-plane bending of the ring | 3112 | Aromatic C-H stretching |
Appied Voltage/V | Assignments | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
Peak Position/cm−1 | |||||||
/ | / | / | 661 | 661 | 661 | 661 | C-N-C bending + C-C-N bending |
/ | / | / | 797 | 797 | 797 | 797 | C-N ring stretching |
/ | / | 1030 | 1027 | 1028 | 1028 | 1028 | C-C ring breathing |
/ | / | / | / | 1194 | 1194 | 1192 | N-(CH2) vibration |
/ | / | / | 1246 | 1246 | 1246 | 1247 | H-C-C in-plane bending vibration |
/ | / | / | 1360 | 1361 | 1361 | 1362 | C-C inter ring vibration |
/ | / | 1528 | 1529 | 1529 | 1529 | 1529 | C-H bending + C-H ring vibration |
/ | / | 1640/1655 | 1658 | 1658 | 1658 | 1658 | C-C ring vibration |
/ | / | 2882 | 2882 | 2882 | 2880 | 2882 | C-H asymmetric stretching |
/ | / | 3010 | 3011 | 3010 | 3011 | 3011 | Combination of 1655 cm−1 + 1355 cm−1 |
/ | / | / | 3050 | 3054 | 3050 | 3051 | Overtone of 2 × 1528 cm−1 (1529 cm−1) |
/ | / | 2882 | 2882 | 2882 | 2880 | 2882 | C-N-C bending + C-C-N bending |
/ | / | 3010 | 3011 | 3010 | 3011 | 3011 | C-N ring stretching |
/ | / | / | 3050 | 3054 | 3050 | 3051 | Overtone of 2 × 1528 cm−1 (1529 cm−1) |
λ (nm) | Q/Surface (C/cm2) (abs. Values) | Transmittance (%) | CCR% at 3 V (%) | CE at 3 V (cm2/C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 V | 0.5 V | 1.0 V | 1.5 V | 2.0 V | 2.5 V | 3.0 V | ||||
400 | 4.09 × 10−3 | 59.68 | 58.20 | 5.14 | 2.34 | 0.40 | 0.54 | 0.48 | 99.18 | 510.6 |
606 | 4.09 × 10−3 | 84.58 | 83.52 | 10.71 | 1.74 | 0.84 | 0.53 | 1.10 | 98.69 | 460.3 |
890 | 4.09 × 10−3 | 74.33 | 71.28 | 52.51 | 29.56 | 20.81 | 18.83 | 23.76 | 68.02 | 120.9 |
1165 | 4.09 × 10−3 | 83.21 | 78.66 | 14.91 | 3.10 | 1.94 | 2.34 | 1.58 | 98.0 | 420.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzuto, C.; Barberi, R.C.; Castriota, M. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers 2023, 15, 3347. https://doi.org/10.3390/polym15163347
Rizzuto C, Barberi RC, Castriota M. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers. 2023; 15(16):3347. https://doi.org/10.3390/polym15163347
Chicago/Turabian StyleRizzuto, Carmen, Riccardo C. Barberi, and Marco Castriota. 2023. "Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications" Polymers 15, no. 16: 3347. https://doi.org/10.3390/polym15163347
APA StyleRizzuto, C., Barberi, R. C., & Castriota, M. (2023). Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers, 15(16), 3347. https://doi.org/10.3390/polym15163347