Improving Printability of Polytetrafluoroethylene (PTFE) with the Help of Plasma Pre-Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Evolution of Ink Adhesion on Treated/Untreated Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Vidor, F.F.; Meyers, T.; Hilleringmann, U. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors. Electronics 2015, 4, 480–506. [Google Scholar] [CrossRef] [Green Version]
- Scandurra, G.; Arena, A.; Ciofi, C. A Brief Review on Flexible Electronics for IoT: Solutions for Sustainability and New Perspectives for Designers. Sensors 2023, 23, 5264. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, A.; Gaikwad, A.; Khan, Y.; Arias, A.C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 2016, 6, 26122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palanisamy, S.; Thangaraj, M.; Moiduddin, K.; Alkhalefah, H.; Karmiris-Obratański, P.; Chin, C.S. Design, Fabrication, and Optimization of a Printed Ag Nanoparticle-Based Flexible Capacitive Sensor for Automotive IVI Bezel Display Applications. Sensors 2023, 23, 4211. [Google Scholar] [CrossRef] [PubMed]
- Basiricò, L.; Mattana, G.; Mas-Torrent, M. Editorial: Organic Electronics: Future Trends in Materials, Fabrication Techniques and Applications. Front. Phys. 2022, 10, 307. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sens. J. 2015, 15, 3164–3185. [Google Scholar] [CrossRef]
- Malik, A.; Kandasubramanian, B. Flexible Polymeric Substrates for Electronic Applications. Polym. Rev. 2018, 58, 630–667. [Google Scholar] [CrossRef]
- Almuslem, A.S.; Shaikh, S.F.; Hussain, M.M. Flexible and Stretchable Electronics for Harsh-Environmental Applications. Adv. Mater. Technol. 2019, 4, 1900145. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.-S.; Lee, T.R. The Wettability of Fluoropolymer Surfaces: Influence of Surface Dipoles. Langmuir 2008, 24, 4817–4826. [Google Scholar] [CrossRef]
- Ehrlich, P.J. Dielectric properties of teflon from room temperature to 314 °C and from frequencies of 102 to 105 c/s.1. J. Res. Natl. Bur. Stand. 1953, 51, 185–188. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Fluoroplastics, Volume 2: Melt Processible Fluoropolymers-the Definitive User’s Guide and Data Book, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Golub, M.A.; Wydeven, T.; Cormia, R.D. ESCA study of the effect of hydrocarbon contamination on poly (tetrafluoroethylene) exposed to atomic oxygen plasma. Langmuir 1991, 7, 1026. [Google Scholar] [CrossRef]
- Chaudhuri, R.G.; Paria, S. Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes. J. Colloid Interface Sci. 2009, 337, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Lojen, D.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Vesel, A. Optimization of surface wettability of polytetrafluoroethylene (PTFE) by precise dosing of oxygen atoms. Appl. Surf. Sci. 2022, 598, 153817. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Ishihara, K.; Shibahara, M.; Nagatani, A.; Honda, K.; Endo, K.; Yamamura, K. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater. Sci. Rep. 2017, 7, 9476. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Xu, D. Polyethylene surface enhancement by corona and chemical co-treatment. Tetrahedron Lett. 2019, 60, 1005–1010. [Google Scholar] [CrossRef]
- Fabbri, P.; Messori, M. Surface Modification of Polymers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 109–130. [Google Scholar]
- Ebnesajjad, S.; Landrock, A.H. (Eds.) Chapter 3-Material Surface Preparation Techniques. In Adhesives Technology Handbook, 3rd ed.; William Andrew Publishing: Norwich, NY, USA, 2015; pp. 35–66. [Google Scholar]
- Van Dongen, M.; Verkuijlen, R.; Aben, R.; Bernards, J. Wettability and Aging of Polymer Substrates after Atmospheric Dielectrical Barrier Discharge Plasma on Demand Treatment. J. Imaging Sci. Technol. 2013, 57, 30503. [Google Scholar] [CrossRef]
- Azimi, H.; Tavakoli, M.; Sharifian, M. Effect of Dielectric Barrier Discharge (DBD) Plasma Treatment on the Polypropylene Film in Presence of Air and Nitrogen at Atmospheric Pressure. Adv. Appl. NanoBio-Technol. 2021, 2, 41–48. [Google Scholar]
- Kelar, J.; Shekargoftar, M.; Krumpolec, R.; Homola, T. Activation of polycarbonate (PC) surfaces by atmospheric pressure plasma in ambient air. Polym. Test. 2018, 67, 428–434. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, C.; Shao, T.; Fang, Z.; Yu, Y.; Yan, P. Repetitive nanosecond-pulse dielectric barrier discharge and its application on surface modification of polymers. Surf. Coat. Technol. 2013, 228, S578–S582. [Google Scholar] [CrossRef]
- Louzi, V.C.; de Carvalho Campo, J.S. Treatment Applied to Synthetic Polymeric Monofilaments (PP, PET, and PA-6). Surf. Interfaces 2019, 14, 98–107. [Google Scholar] [CrossRef]
- Fang, Z.; Hao, L.; Yang, H.; Xie, X.; Qiu, Y.; Edmund, K. Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air. Appl. Surf. Sci. 2009, 255, 7279–7285. [Google Scholar] [CrossRef]
- Astanei, D.; Burlica, R.; Cretu, D.-E.; Olariu, M.; Stoica, I.; Beniuga, O. Treatment of Polymeric Films Used for Printed Electronic Circuits Using Ambient Air DBD Non-Thermal Plasma. Materials 2022, 15, 1919. [Google Scholar] [CrossRef] [PubMed]
- ASTM D5946; ASTM D5946-17 Standard Test Method for Corona-Treated Polymer Films Using Water Contact Angle Measurements. Available online: https://www.astm.org/d5946-17.html (accessed on 13 July 2023).
200 μm | 500 μm | 750 μm | 1000 μm | |
---|---|---|---|---|
240 min | 233.65 | 536.63 | 764.69 | 959.61 |
180 min | 213.94 | 494.58 | 747.11 | 994.65 |
120 min | 185.49 | 485.12 | 713.41 | 1011 |
60 min | 207.15 | 486.18 | 727.15 | 1022.55 |
1 min | 205.46 | 497.35 | 741.95 | 1015.08 |
Average value | 209.14 | 499.97 | 738.86 | 1000.58 |
Resistance (Ω) | ||||||||
---|---|---|---|---|---|---|---|---|
200 μm | 500 μm | 750 μm | 1000 μm | 1500 μm | 2000 μm | 2500 μm | 3000 μm | |
Ag Mateprincs_5s, 4 h | 55.3 | 18.3 | 13 | 10.3 | 7.6 | 6.3 | 5.4 | 4.7 |
Ag Mateprincs_5s, 3 h | 63 | 21.7 | 14.1 | 11.2 | 8.2 | 6.7 | 5.7 | 4.9 |
Ag Mateprincs_5s, 2 h | 62 | 21.4 | 15 | 11.4 | 8.1 | 6.7 | 5.7 | 4.9 |
Ag Mateprincs_5s, 1 h | 63.9 | 20.6 | 13.9 | 10.8 | 7.7 | 6.4 | 5.3 | 4.5 |
Ag Mateprincs_5s, 0 h | 55.5 | 20.4 | 14.1 | 11.2 | 8 | 6.6 | 5.7 | 4.9 |
Trace Width (μm) | 500 μm | 750 μm | 1000 μm | 1500 μm | 2000 μm | 2500 μm | 3000 μm |
---|---|---|---|---|---|---|---|
Resistance (Ω) | 1127 | 643 | 375 | 214 | 216 | 203 | 145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olariu, M.A.; Herrero, R.; Astanei, D.G.; Jofré, L.; Morentin, J.; Filip, T.A.; Burlica, R. Improving Printability of Polytetrafluoroethylene (PTFE) with the Help of Plasma Pre-Treatment. Polymers 2023, 15, 3348. https://doi.org/10.3390/polym15163348
Olariu MA, Herrero R, Astanei DG, Jofré L, Morentin J, Filip TA, Burlica R. Improving Printability of Polytetrafluoroethylene (PTFE) with the Help of Plasma Pre-Treatment. Polymers. 2023; 15(16):3348. https://doi.org/10.3390/polym15163348
Chicago/Turabian StyleOlariu, Marius Andrei, Rakel Herrero, Dragoș George Astanei, Lisandro Jofré, Javier Morentin, Tudor Alexandru Filip, and Radu Burlica. 2023. "Improving Printability of Polytetrafluoroethylene (PTFE) with the Help of Plasma Pre-Treatment" Polymers 15, no. 16: 3348. https://doi.org/10.3390/polym15163348
APA StyleOlariu, M. A., Herrero, R., Astanei, D. G., Jofré, L., Morentin, J., Filip, T. A., & Burlica, R. (2023). Improving Printability of Polytetrafluoroethylene (PTFE) with the Help of Plasma Pre-Treatment. Polymers, 15(16), 3348. https://doi.org/10.3390/polym15163348