Quantifying the Residual Stiffness of Concrete Beams with Polymeric Reinforcement under Repeated Loads
Abstract
:1. Introduction
1.1. Literature Review
1.2. The Proposed Standardized Analysis Concept
2. Testing Method and Analytical Model
2.1. Analytical Model
- Idealized elastic material laws define the mechanical behavior of the reinforcement and the compressed concrete. This modeling approach substantially simplifies the mathematical expressions and ensures a straightforward solution.
- The rectangular distribution of the tensile stresses in concrete defines the equivalent stress (Figure 1d). This center simplification ensures formulating the exact relationship between the bending moment and curvature and avoiding iterative solutions.
2.2. Sample Geometry and Testing Layout
- The sign “≡” relates the loading conditions to the particular beam sample. For instance, the symbol “≡S1” refers to the loading condition of the S1-EBR beam, determining the exact service moment (Mser) and the cycle boundaries (Mmin and Mmax).
- Gribniak et al. [20] tested the identical element to the S6-GFRP sample until failure under monotonic load, which determines the loading conditions in this study.
- In the element with steel reinforcement (S12-S), the theoretical moment, corresponding to the steel yielding, limits the ultimate cycle load Mmax; the service load Mser was set to exceed the cracking moment calculated by Eurocode 2 formulas [44].
- The target loadings of the elements, combining steel and NSM reinforcements, were set to represent the loading conditions of alternative test samples (S1-EBR, S4-NSM, and S12-S) for comparison purposes.
2.3. Experimental Program
3. Results
4. Discussion
4.1. The Cyclic Load Effect
4.2. The Reinforcement Effect
4.3. The Load Intensity Effect
5. Conclusions
- The proposed testing procedure is suitable for quantifying the residual stiffness decrease under repeated mechanical load, including the complete load removal between the loading cycles. The quantification employs the equivalent stresses acting in the concrete in tension under the assumption of the rectangular stress distribution. This simplified model approximates the tensile stresses with sufficient accuracy—the average approximation error (regarding the “exact” solution) does not exceed 7%. On the other hand, the “exact” inverse analysis reported in the literature is inapplicable to the specimens under cycling loads, which makes the proposed methodology irreplaceable for this study’s purpose.
- This study reveals a limited ability of glass fiber-reinforced polymer (GFRP) bars to ensure the bonding performance under repeated loads. The concrete deformations exceed the bonding limit, making the reinforcement inefficient because of a relatively low modulus of elasticity (60 GPa) of the GFRP bars. Moreover, the bonding problem becomes apparent only for repeated loads—the previous tests did not identify the bond deterioration problems of GFRP bars under monotonic load for the same reinforcement configurations. On the other hand, this drawback is untypical for alternative reinforcement schemes considered in this study, proving the viability of the proposed analysis methodology.
- The carbon fiber (CF) reinforced materials demonstrate outstanding mechanical performance under repeated loads. The externally bonded reinforcement (EBR) system ensures the equivalent stresses, which do not decrease below 0.70 MPa; the near-surface mounted (NSM) system preserves the minimum 0.64 MPa stresses. The hybrid reinforcement system, combining steel bars and NSM CFRP strips, improves this value to 0.87 MPa. Under the increased load cycles, the hybrid reinforcement demonstrates a further increase in mechanical performance—the equivalent stresses exceed 1.15 MPa, exceeding 50% of the tensile resistance of the concrete.
- The NSM reinforcement system efficiently strengthened the beam sample with steel reinforcement bars tested until 85% of the theoretical load-bearing capacity. The load repetitions did not affect the residual resistance of the strengthened specimen, preserving the averaged equivalent stresses at an approximately 1.3 MPa level. Further studies should reveal the hybrid reinforcement system’s efficient layout and steel-to-CFRP ratio.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Obaidat, A.T. Flexural behavior of reinforced concrete beam using CFRP hybrid system. Eur. J. Environ. Civ. Eng. 2022, 26, 6165–6187. [Google Scholar] [CrossRef]
- Dang, H.V.; Phan, D.N. Experimental investigation and analysis of pure bending plastic hinge zone in hybrid beams rein-forced with high reinforcement ratio under static loads. Eur. J. Environ. Civ. Eng. 2022, 26, 6188–6210. [Google Scholar] [CrossRef]
- Garnevičius, M.; Gribniak, V. Developing a hybrid FRP-concrete composite beam. Sci. Rep. 2022, 12, 16237. [Google Scholar] [CrossRef]
- Gribniak, V. Material-oriented engineering for eco-optimized structures—A new design approach. Adv. Mater. Lett. 2023, 14, 23011713. [Google Scholar] [CrossRef]
- Yun, H.-D.; Kim, S.-H.; Choi, W. Determination of mechanical properties of sand-coated carbon fiber reinforced polymer (CFRP) rebar. Polymers 2023, 15, 2186. [Google Scholar] [CrossRef] [PubMed]
- Wdowiak-Postulak, A.; Wieruszewski, M.; Bahleda, F.; Prokop, J.; Brol, J. Fibre-reinforced polymers and steel for the reinforcement of wooden elements—Experimental and numerical analysis. Polymers 2023, 15, 2062. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, X.; Feng, P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. Part B Eng. 2020, 191, 107958. [Google Scholar] [CrossRef]
- Bazli, M.; Jafari, A.; Ashrafi, H.; Zhao, X.-L.; Bai, Y.; Singh Raman, R.K. Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Constr. Build. Mater. 2020, 231, 117137. [Google Scholar] [CrossRef]
- Xu, J.; Gu, Y.; Fu, T.; Zhang, X.; Zhang, H. Research on the heating process of CFRP circular tubes based on electromagnetic induction heating method. Polymers 2023, 15, 3039. [Google Scholar] [CrossRef]
- Nehdi, M.; Said, A. Performance of RC frames with hybrid reinforcement under reversed cyclic loading. Mater. Struct. 2005, 38, 627–637. [Google Scholar] [CrossRef]
- Muciaccia, G.; Khorasani, M.; Mostofinejad, D. Effect of different parameters on the performance of FRP anchors in combination with EBR-FRP strengthening systems: A review. Constr. Build. Mater. 2022, 354, 129181. [Google Scholar] [CrossRef]
- Mohamed, N.; Farghaly, A.S.; Benmokrane, B. Beam-testing method for assessment of bond performance of FRP bars in concrete under tension-compression reversed cyclic loading. ASCE J. Compos. Constr. 2016, 21, 06016001. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J. Resistance of interfacial debonding failure of GFRP bars embedded in concrete reinforced with structural fibers under cycling loads. Compos. Part B Eng. 2019, 156, 201–211. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Xie, K.; Wu, Z.; Li, F. Bond behavior of basalt fiber-reinforced polymer bars embedded in concrete under mono-tensile and cyclic loads. Int. J. Concr. Struct. Mater. 2020, 14, 19. [Google Scholar] [CrossRef]
- Shen, D.; Wen, C.; Zhu, P.; Li, M.; Ojha, B.; Li, C. Bond behavior between basalt fiber-reinforced polymer bars and concrete under cyclic loading. Constr. Build. Mater. 2020, 258, 119518. [Google Scholar] [CrossRef]
- Xiao, L.; Dai, S.; Jin, Q.; Peng, S. Bond performance of GFRP bars embedded in steel-PVA hybrid fiber concrete subjected to repeated loading. Struct. Concr. 2023, 24, 1597–1611. [Google Scholar] [CrossRef]
- Shi, J.; Sun, S.; Cao, X.; Wang, H. Pullout behaviors of basalt fiber-reinforced polymer bars with mechanical anchorages for concrete structures exposed to seawater. Constr. Build. Mater. 2023, 373, 130866. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Yu, J.; Lu, Z.; Chen, Y. Effects of simulated seawater on static and fatigue performance of GFRP bar–concrete bond. J. Build. Eng. 2023, 68, 105985. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Kaklauskas, G.; Gribniak, V.; Weber, A.; Juknys, M. Serviceability analysis of concrete beams with different arrangement of GFRP bars in the tensile zone. ASCE J. Compos. Constr. 2014, 18, 04014005. [Google Scholar] [CrossRef]
- Gribniak, V.; Sokolov, A.; Rimkus, A.; Sultani, H.A.; Tuncay, M.C.; Torres, L. A novel approach to residual stiffness of flexural concrete elements with composite reinforcement. In Proceedings of the IABSE Symposium—Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27–29 March 2019; IABSE: Zurich, Switzerland, 2019; pp. 46–51. [Google Scholar]
- Rimkus, A.; Barros, J.A.O.; Gribniak, V.; Rezazadeh, M. Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systems. Compos. Struct. 2019, 220, 273–288. [Google Scholar] [CrossRef]
- Gribniak, V.; Sultani, H.A.; Rimkus, A.; Sokolov, A.; Torres, L. Standardised quantification of structural efficiency of hybrid reinforcement systems for developing concrete composites. Compos. Struct. 2021, 274, 114357. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M.; Isleem, H.F.; Najm, H.M.; Sabri, M.M.S. Ultra high performance concrete and C-FRP tension rebars: A unique combinations of materials for slabs subjected to low-velocity drop impact loading. Front. Mater. 2022, 9, 1061297. [Google Scholar] [CrossRef]
- Yuan, J.S.; Gao, D.; Zhu, H.; Chen, G.; Zhao, L. Flexural behavior of reinforced concrete beams reinforced with glass fiber reinforced polymer rectangular tubes. Front. Mater. 2020, 7, 577299. [Google Scholar] [CrossRef]
- Farahi, B.; Esfahani, M.R.; Sabzi, J. Experimental investigation on the behavior of reinforced concrete beams retrofitted with NSM-SMA/FRP. Amirkabir J. Civ. Eng. 2019, 51, 209–212. [Google Scholar] [CrossRef]
- Godat, A.; Qu, Z.; Lu, X.Z.; Labossiere, P.; Ye, L.P.; Neale, K.W. Size effects for reinforced concrete beams strengthened in shear with CFRP strips. ASCE J. Compos. Constr. 2010, 14, 260–271. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, H.; Zhen, X.; Wen, C.; Chen, G. Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading. Compos. Struct. 2021, 270, 114072. [Google Scholar] [CrossRef]
- Kargaran, A.; Kheyroddin, A. Experimental and numerical investigation of seismic retrofitting of RC square short columns using FRP composites. Eur. J. Environ. Civ. Eng. 2022, 26, 4619–4642. [Google Scholar] [CrossRef]
- Sultani, H.A.; Rimkus, A.; Sokolov, A.; Gribniak, V. A new testing procedure to quantify unfavourable environmental effect on mechanical performance of composite reinforcement system. In Proceedings of the 14th fib International Ph.D. Symposium in Civil Engineering, Rome, Italy, 5–7 September 2022; fib: Lausanne, Switzerland, 2022; pp. 377–384. [Google Scholar]
- Mat Saliah, S.N.; Md Nor, N. Assessment of the integrity of reinforced concrete beams strengthened with carbon fibre reinforced polymer using the acoustic emission technique. Front. Mech. Eng. 2022, 8, 885645. [Google Scholar] [CrossRef]
- Sun, R.; Perera, R.; Gu, J.; Wang, Y. A simplified approach for evaluating the flexural response of concrete beams reinforced with FRP bars. Front. Mater. 2021, 8, 765058. [Google Scholar] [CrossRef]
- Fathuldeen, S.W.; Qissab, M.A. Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading. Struct. Eng. Mech. 2019, 70, 67–80. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Z.; Wen, C.; Cheng, S.; Wei, Y. Prediction model for the flexural strength of steel fiber reinforced concrete beams with fiber-reinforced polymer bars under repeated loading. Compos. Struct. 2020, 250, 112609. [Google Scholar] [CrossRef]
- Gribniak, V.; Kaklauskas, G.; Torres, L.; Daniunas, A.; Timinskas, E.; Gudonis, E. Comparative analysis of deformations and tension-stiffening in concrete beams reinforced with GFRP or steel bars and fibers. Compos. Part B Eng. 2013, 50, 158–170. [Google Scholar] [CrossRef]
- Song, S.; Wang, G.; Min, X.; Duan, N.; Tu, Y. Experimental study on cyclic response of concrete frames reinforced by Steel-CFRP hybrid reinforcement. J. Build. Eng. 2021, 34, 101937. [Google Scholar] [CrossRef]
- Gribniak, V.; Sokolov, A. Standardized RC beam tests for modeling the fiber bridging effect in SFRC. Constr. Build. Mater. 2023, 370, 130652. [Google Scholar] [CrossRef]
- Kaklauskas, G.; Gribniak, V.; Bacinskas, D. Discussion of “Tension stiffening in lightly reinforced concrete slabs” by R. I. Gilbert. ASCE J. Struct. Eng. 2008, 134, 1261–1262. [Google Scholar] [CrossRef]
- Gribniak, V.; Kaklauskas, G.; Juozapaitis, A.; Kliukas, R.; Meskenas, A. Efficient technique for constitutive analysis of reinforced concrete flexural members. Inverse Probl. Sci. Eng. 2017, 25, 27–40. [Google Scholar] [CrossRef]
- Rimkus, A.; Cervenka, V.; Gribniak, V.; Cervenka, J. Uncertainty of the smeared crack model applied to RC beams. Eng. Fract. Mech. 2020, 233, 107088. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Jankutė, A.; Urbonavičius, J.; Gribniak, V. Analysis of mechanical performance and durability of self-healing biological concrete. Constr. Build. Mater. 2020, 260, 119822. [Google Scholar] [CrossRef]
- Sultani, H.A.; Rimkus, A.; Sokolov, A.; Gribniak, V. Analyzing environmental effects on the mechanical performance of composite reinforcement systems. Lect. Notes Civ. Eng. 2023, 349, 618–627. [Google Scholar] [CrossRef]
- Dulinskas, E.; Gribniak, V.; Kaklauskas, G. Influence of steam curing on high-cyclic behaviour of prestressed concrete bridge elements. Balt. J. Road Bridge Eng. 2008, 3, 115–120. [Google Scholar] [CrossRef]
- Gribniak, V.; Kaklauskas, G.; Bacinskas, D. Experimental investigation of shrinkage influence on tension stiffening of RC beams. In Proceedings of the Eighth International Conference: Creep, Shrinkage and Durability of Concrete and Concrete Structures (ConCreep 8), Ise-Shima, Japan, 30 September–2 October 2008; CRC Press: London, UK, 2009; Volume 1, pp. 571–577. [Google Scholar] [CrossRef]
- EN 1992-1-1:2004; Eurocode 2: Design of Concrete Structures—Part 1: General Rules and Rules for Buildings. CEN: Brussels, Belgium, 2004.
- Gribniak, V.; Cervenka, V.; Kaklauskas, G. Deflection prediction of reinforced concrete beams by design codes and computer simulation. Eng. Struct. 2013, 56, 2175–2186. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Torres, L.; Hui, D. An experimental study on cracking and deformations of concrete in tension elements reinforced with multiple GFRP bars. Compos. Struct. 2018, 201, 477–485. [Google Scholar] [CrossRef]
- Rimkus, A.; Gribniak, V. Experimental data of deformation and cracking behaviour of concrete ties reinforced with multiple bars. Data Brief 2017, 13, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, C.; Cheng, S.; Yuan, J. Flexural performance of concrete beams reinforced with continuous FRP bars and discrete steel fibers under cyclic loads. Polymers 2022, 14, 1399. [Google Scholar] [CrossRef] [PubMed]
- Gribniak, V.; Rimkus, A.; Torres, L.; Jakstaite, R. Deformation analysis of RC ties: Representative geometry. Struct. Concr. 2017, 18, 634–647. [Google Scholar] [CrossRef]
- Gribniak, V.; Rimkus, A.; Misiunaite, I.; Zakaras, T. Improving local stability of aluminium profile with low-modulus stiffeners: Experimental and numerical web buckling analysis. Thin-Walled Struct. 2022, 172, 108858. [Google Scholar] [CrossRef]
- Gribniak, V. Special Issue “Advanced Composites: From Materials Characterization to Structural Application”. Materials 2020, 13, 5820. [Google Scholar] [CrossRef]
Beam | h | b | d1 | d2 | A1 | A2 | E1 | E2 | ft,1 | ft,2 | nρ | f’c | Age |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm2) | (GPa) | (MPa) | (%) | (MPa) | (Days) | |||||||
S1-EBR | 103 | 199 | 104 | – | 32.8 | – | 230 | – | 4830 | – | 1.03 | 50.69 ± 1.53 | 47 |
S2-EBR | 104 | 198 | 105 | – | 32.8 | – | 230 | – | 4830 | – | 1.13 | 35.12 ± 2.63 | 22 |
S3-EBR | 102 | 198 | 103 | – | 32.8 | – | 230 | – | 4830 | – | 1.18 | 32.98 ± 3.15 | 21 |
S4-NSM | 100 | 201 | 90 | – | 28.0 | – | 170 | – | 2800 | – | 0.83 | 34.12 ± 2.48 | 21 |
S5-NSM | 106 | 201 | 96 | – | 28.0 | – | 170 | – | 2800 | – | 0.78 | 34.62 ± 2.92 | 21 |
S6-GFRP | 104 | 200 | 77 | – | 100.6 | – | 60 | – | 1490 | – | 1.22 | 35.12 ± 2.61 | 22 |
S7-GFRP | 106 | 197 | 76 | – | 100.6 | – | 60 | – | 1490 | – | 1.22 | 34.62 ± 2.48 | 21 |
S8-GFRP | 102 | 202 | 74 | – | 100.6 | – | 60 | – | 1490 | – | 1.11 | 40.80 ± 1.63 | 13 |
S9-GFRP | 107 | 201 | 81 | – | 100.6 | – | 60 | – | 1490 | – | 1.26 | 40.80 ± 1.63 | 13 |
S10-S/NSM | 107 | 200 | 72 | 97 | 38.11 | 28 | 206 | 170 | 503.9 | 2800 | 2.45 | 32.98 ± 3.15 | 22 |
S11-S/NSM | 108 | 197 | 77 | 92 | 38.11 | 28 | 206 | 170 | 503.9 | 2800 | 2.30 | 40.80 ± 1.63 | 14 |
S12-S | 101 | 200 | 67 | – | 38.11 | – | 206 | – | 503.9 | – | 1.83 | 34.12 ± 2.92 | 19 |
S12-S/NSM | 92 | 28 | 170 | 2800 | 2.45 | 35.23 ± 3.05 | 26 |
Beam | Load Type | Mmin | Mmax | Mser | Mult |
---|---|---|---|---|---|
S1-EBR | A | – | – | 3.710 | 7.035 |
S2-EBR | B | 3.075 | 4.125 | 3.710 | ≡S1(*) |
S3-EBR | B | 3.075 | 4.125 | 3.710 | ≡S1 |
S4-NSM | A | – | – | 2.220 | 4.005 |
S5-NSM | B | 1.875 | 2.475 | 2.220 | ≡S4 |
S6-GFRP | B | 2.850 | 3.750 | 3.375 | 6.527(†) |
S7-GFRP | B | 2.850 | 3.750 | 3.375 | ≡S6 |
S8-GFRP | C | 2.175 | 2.975 | 2.625 | ≡S6 |
2.850 | 3.750 | 3.375 | |||
S9-GFRP | C | 2.175 | 2.975 | 2.625 | ≡S6 |
2.850 | 3.750 | 3.375 | |||
S10-S/NSM | B | 1.875 | 2.475 | 2.220 | ≡S4 |
S11-S/NSM | C | 0.975 | 1.350 | 1.215 | 1.42(‡) |
1.875 | 2.475 | 2.220 | ≡S4 | ||
3.075 | 4.125 | 3.710 | ≡S1 | ||
S12-S | B | 0.975 | 1.350 | 1.215 | 1.42(‡) |
S12-S/NSM | C | 0.975 | 1.350 | 1.215 | 1.42(‡) |
1.875 | 2.475 | 2.212 | ≡S4 | ||
3.075 | 4.125 | 3.710 | ≡S1 |
Beam | Load Stage I | Load Stage II | Load Stage III | Total Result | ||||
---|---|---|---|---|---|---|---|---|
Mser (kNm) | κres (km−1) | Mser (kNm) | κres (km−1) | Mser (kNm) | κres (km−1) | Mmax (kNm) | Σκres (km−1) | |
S2-EBR | 3.710 | 9.893 | 3.710 | 0.719 | 3.710 | 0.500 | 4.125 | 11.11 |
S3-EBR | 3.710 | 11.23 | 3.710 | 1.448 | 3.710 | 0.863 | 4.125 | 13.54 |
S5-NSM | 2.220 | 11.75 | 2.220 | 1.285 | 2.220 | 1.059 | 2.475 | 14.10 |
S6-GFRP | 3.375 | 29.08 | 3.375 | 3.052 | 3.375 | 3.989 | 3.750 | 36.12 |
S7-GFRP | 3.375 | 30.88 | 3.375 | 2.159 | 3.375 | 4.274 | 3.750 | 37.32 |
S8-GFRP | 2.625 | 22.64 | 3.375 | 6.693 | – | – | 3.750 | 29.33 |
S9-GFRP | 2.625 | 21.32 | 3.375 | 6.819 | – | – | 3.750 | 28.14 |
S10-S/NSM | 2.212 | 7.084 | 2.212 | 0.522 | 2.212 | 1.937 | 2.475 | 9.544 |
S11-S/NSM | 1.215 | 0.548 | 2.212 | 4.585 | 3.710 | 5.859 | 4.125 | 10.99 |
S12-S | 1.215 | 1.100 | 1.215 | 5.570 | 1.215 | 2.767 | 1.350 | 9.437 |
S12-S/NSM | 1.215 | 0.604 | 2.212 | 4.856 | 3.710 | 5.744 | 4.125 | 11.20 |
Beam | Load Stage I | Load Stage II | Load Stage III | |||||
---|---|---|---|---|---|---|---|---|
(MPa) | (‰) | (MPa) | (‰) | (GPa) | (MPa) | (‰) | (GPa) | |
S2-EBR | 1.474 | 1.570 | 1.224 | 1.710 | −1.787 | 1.040 | 1.815 | −1.757 |
S3-EBR | 1.268 | 1.749 | 1.000 | 1.899 | −1.791 | 0.771 | 2.029 | −1.763 |
S5-NSM | 0.949 | 1.679 | 0.761 | 1.903 | −0.838 | 0.660 | 2.026 | −0.825 |
S6-GFRP | 0.472 | 4.610 | 0.196 | 5.014 | −0.683 | 0.009 | 5.290 | −0.680 |
S7-GFRP | 0.348 | 5.107 | 0.075 | 5.546 | −0.621 | −0.021 | 5.700 | −0.619 |
S8-GFRP | 0.655 | 3.418 | 0.431 | 5.018 | −0.140 | – | – | – |
S9-GFRP | 0.514 | 3.137 | 0.180 | 4.743 | −0.208 | – | – | – |
S10-S/NSM | 1.160 | 0.857 | 0.990 | 0.963 | −1.613 | 0.902 | 1.018 | −1.581 |
S11-S/NSM | 1.573 | 0.073 | 1.590 | 0.572 | 0.033 | 1.222 | 1.824 | −0.294 |
S12-S | 1.674 | 0.131 | 1.654 | 0.318 | −1.712 | 0.937 | 0.715 | −1.050 |
S12-S/NSM | 1.240 | 0.239 | 1.394 | 0.873 | 0.243 | 1.173 | 2.166 | −0.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultani, H.A.; Sokolov, A.; Rimkus, A.; Gribniak, V. Quantifying the Residual Stiffness of Concrete Beams with Polymeric Reinforcement under Repeated Loads. Polymers 2023, 15, 3393. https://doi.org/10.3390/polym15163393
Sultani HA, Sokolov A, Rimkus A, Gribniak V. Quantifying the Residual Stiffness of Concrete Beams with Polymeric Reinforcement under Repeated Loads. Polymers. 2023; 15(16):3393. https://doi.org/10.3390/polym15163393
Chicago/Turabian StyleSultani, Haji Akbar, Aleksandr Sokolov, Arvydas Rimkus, and Viktor Gribniak. 2023. "Quantifying the Residual Stiffness of Concrete Beams with Polymeric Reinforcement under Repeated Loads" Polymers 15, no. 16: 3393. https://doi.org/10.3390/polym15163393
APA StyleSultani, H. A., Sokolov, A., Rimkus, A., & Gribniak, V. (2023). Quantifying the Residual Stiffness of Concrete Beams with Polymeric Reinforcement under Repeated Loads. Polymers, 15(16), 3393. https://doi.org/10.3390/polym15163393