Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Instrumentation
2.4. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Du, L.; Li, H.; Ding, Y.; Yang, W. Review on Processes of Nanofiber Prepared by Polymer Melt Method. Fangzhi Xuebao J. Text. Res. 2018, 167–174. [Google Scholar]
- Wei, Z. Research Process of Polymer Nanofibers Prepared by Melt Spinning. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 022002. [Google Scholar] [CrossRef]
- Atıcı, B.; Ünlü, C.H.; Yanilmaz, M. A Review on Centrifugally Spun Fibers and Their Applications. Polym. Rev. 2022, 62, 1–64. [Google Scholar] [CrossRef]
- Dias, F.T.G.; Rempel, S.P.; Agnol, L.D.; Bianchi, O. The Main Blow Spun Polymer Systems: Processing Conditions and Applications. J. Polym. Res. 2020, 27, 205. [Google Scholar] [CrossRef]
- Benito, J.G.; Teno, J.; Torres, D.; Diaz, M. Solution Blow Spinning and Obtaining Submicrometric Fibers of Different Polymers. Int. J. Nanoparticles Nanotechnol. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Lorente, M.A.; Corral, A.; González-Benito, J. PCL/Collagen Blends Prepared by Solution Blow Spinning as Potential Materials for Skin Regeneration. J. Appl. Polym. Sci. 2021, 138, 50493. [Google Scholar] [CrossRef]
- Domínguez, J.E.; Kasiri, A.; González-Benito, J. Wettability Behavior of Solution Blow Spun Polysulfone by Controlling Morphology. J. Appl. Polym. Sci. 2020, 138, 50200. [Google Scholar] [CrossRef]
- Kasiri, A.; Domínguez, J.E.; González-Benito, J. Morphology Optimization of Solution Blow Spun Polystyrene to Obtain Superhydrophobic Materials with High Ability of Oil Absorption. Polym. Test 2020, 91, 106859. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Z.; Hu, J.; Qiu, Z.; Li, J.; Geng, W.; Su, B.; Yang, X. Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 658–664. [Google Scholar] [CrossRef]
- Houis, S.; Schreiber, F.; Gries, T. Fiber Table: Bicomponent Fibers (Part 1). Chem. Fibers Int. 2008, 58, 38. [Google Scholar]
- Houis, S.; Schreiber, F.; Gries, T. Bicomponent Fibers (Part 2). Chem. Fibers Int. 2008, 58, 158. [Google Scholar]
- Dasdemir, M.; Maze, B.; Anantharamaiah, N.; Pourdeyhimi, B. Influence of Polymer Type, Composition, and Interface on the Structural and Mechanical Properties of Core/Sheath Type Bicomponent Nonwoven Fibers. J. Mater. Sci. 2012, 47, 5955–5969. [Google Scholar] [CrossRef]
- Naeimirad, M.; Zadhoush, A.; Kotek, R.; Esmaeely Neisiany, R.; Nouri Khorasani, S.; Ramakrishna, S. Recent Advances in Core/Shell Bicomponent Fibers and Nanofibers: A Review. J. Appl. Polym. Sci. 2018, 135, 46265. [Google Scholar] [CrossRef]
- Abasalta, M.; Asefnejad, A.; Khorasani, M.T.; Saadatabadi, A.R. Fabrication of Carboxymethyl Chitosan/Poly(ε-Caprolactone)/Doxorubicin/Nickel Ferrite Core-Shell Fibers for Controlled Release of Doxorubicin against Breast Cancer. Carbohydr. Polym. 2021, 257, 117631. [Google Scholar] [CrossRef]
- Domínguez, J.E.; Olivos, E.; Vázquez, C.; Rivera, J.M.; Hernández-Cortes, R.; González-Benito, J. Automated Low-Cost Device to Produce Sub-Micrometric Polymer Fibers Based on Blow Spun Method. HardwareX 2021, 10, e00218. [Google Scholar] [CrossRef]
- Domínguez Herrera, J.E.; Teno Díaz, J.; González Benito, F.J. Dispositivo Para La Obtención de Fibras de Diámetro Nanométrico o Micrométrico. Ph.D. Thesis, Carlos III University of Madrid, Madrid, Spain, 2021. [Google Scholar]
- Teno, J.; Corral, A.; Gorrasi, G.; Sorrentino, A.; Benito, J.G. Fibrous Nanocomposites Based on EVA40 Filled with Cu Nanoparticles and Their Potential Antibacterial Action. Mater. Today Commun. 2019, 20, 100581. [Google Scholar] [CrossRef]
- Rezakhaniha, R.; Agianniotis, A.; Schrauwen, J.T.C.; Griffa, A.; Sage, D.; Bouten, C.V.C.; Van De Vosse, F.N.; Unser, M.; Stergiopulos, N. Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy. Biomech. Model Mechanobiol. 2012, 11, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Püspöki, Z.; Storath, M.; Sage, D.; Unser, M. Transforms and Operators for Directional Bioimage Analysis: A Survey. Advances in Anatomy, Embryology and Cell Biology; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Wojasiński, M.; Pilarek, M.; Ciach, T. Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid) Materials for Biomedical Engineering. Pol. J. Chem. Technol. 2014, 16, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.E.; Moraes, E.A.; Costa, R.G.F.; Afonso, A.S.; Mattoso, L.H.C.; Orts, W.J.; Medeiros, E.S. Nano and Submicrometric Fibers of Poly(D,L-Lactide) Obtained by Solution Blow Spinning: Process and Solution Variables. J. Appl. Polym. Sci. 2011, 122, 3396–3405. [Google Scholar] [CrossRef]
- Liang, F.; Fang, F.; Zeng, J.; Wang, Z.; Ou, W.; Chen, X.; Wu, P.; Wang, H.; Zhang, L. Fabrication of Three-Dimensional Micro-Nanofiber Structures by a Novel Solution Blow Spinning Device. AIP Adv. 2017, 7, 025002. [Google Scholar] [CrossRef] [Green Version]
- Lorente, M.Á.; González-Gaitano, G.; González-Benito, J. Preparation, Properties and Water Dissolution Behavior of Polyethylene Oxide Mats Prepared by Solution Blow Spinning. Polymers 2022, 14, 1299. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Mattoso, L.H.C.; Orts, W.J.; Medeiros, E.S. Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study. Adv. Mater. Sci. Eng. 2013, 2013, 409572. [Google Scholar] [CrossRef] [Green Version]
- Sinha-Ray, S.; Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. Theoretical and Experimental Investigation of Physical Mechanisms Responsible for Polymer Nanofiber Formation in Solution Blowing. Polymer 2015, 56, 452–463. [Google Scholar] [CrossRef]
- Arinstein, A.; Zussman, E. Electrospun Polymer Nanofibers: Mechanical and Thermodynamic Perspectives. J. Polym. Sci. B Polym. Phys. 2011, 49, 691–707. [Google Scholar] [CrossRef]
- Zhuang, X.; Yang, X.; Shi, L.; Cheng, B.; Guan, K.; Kang, W. Solution Blowing of Submicron-Scale Cellulose Fibers. Carbohydr. Polym. 2012, 90, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Venkatraman, S.S. Importance of Viscosity Parameters in Electrospinning: Of Monolithic and Core–Shell Fibers. Mater. Sci. Eng. C 2012, 32, 1037–1042. [Google Scholar] [CrossRef]
- Zhou, Y.; Qi, P.; Zhao, Z.; Liu, Q.; Li, Z. Fabrication and Characterization of Fibrous HAP/PVP/PEO Composites Prepared by Sol-Electrospinning. RSC Adv. 2014, 4, 16731–16738. [Google Scholar] [CrossRef]
- Wongsasulak, S.; Kit, K.M.; McClements, D.J.; Yoovidhya, T.; Weiss, J. The Effect of Solution Properties on the Morphology of Ultrafine Electrospun Egg Albumen-PEO Composite Fibers. Polymer 2007, 48, 448–457. [Google Scholar] [CrossRef]
- Cojocaru, C.; Dorneanu, P.P.; Airinei, A.; Olaru, N.; Samoila, P.; Rotaru, A. Design and Evaluation of Electrospun Polysulfone Fibers and Polysulfone/NiFe2O4 Nanostructured Composite as Sorbents for Oil Spill Cleanup. J. Taiwan Inst. Chem. Eng. 2017, 70, 267–281. [Google Scholar] [CrossRef]
- Mazoochi, T.; Hamadanian, M.; Ahmadi, M.; Jabbari, V. Investigation on the Morphological Characteristics of Nanofiberous Membrane as Electrospun in the Different Processing Parameters. Int. J. Ind. Chem. 2012, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Gu, Q.; Hu, H.; Li, F. A Novel Electrospun Polysulfone Fiber Membrane: Application to Advanced Treatment of Secondary Bio-Treatment Sewage. Env. Technol. 2008, 29, 13–21. [Google Scholar] [CrossRef]
- Tong, J.; Xu, X.; Wang, H.; Zhuang, X.; Zhang, F. Solution-Blown Core-Shell Hydrogel Nanofibers for Bovine Serum Albumin Affinity Adsorption. RSC Adv. 2015, 5, 83232–83238. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Y.; Gupta, M.; Gleason, K.K.; Rutledge, G.C. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules 2005, 38, 9742–9748. [Google Scholar] [CrossRef]
- Obaid, M.; Barakat, N.A.M.; Fadali, O.A.; Motlak, M.; Almajid, A.A.; Khalil, K.A. Effective and Reusable Oil/Water Separation Membranes Based on Modified Polysulfone Electrospun Nanofiber Mats. Chem. Eng. J. 2015, 259, 449–456. [Google Scholar] [CrossRef]
- Al-Qadhi, M.; Merah, N.; Matin, A.; Abu-Dheir, N.; Khaled, M.; Youcef-Toumi, K. Preparation of Superhydrophobic and Self-Cleaning Polysulfone Non-Wovens by Electrospinning: Influence of Process Parameters on Morphology and Hydrophobicity. J. Polym. Res. 2015, 22, 207. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zou, L.; Lu, H.; Wei, Y.; Hua, J.; Chen, S. Preparation and Characterization of Electrospun PHBV/PEO Mats: The Role of Solvent and PEO Component. J. Mater. Sci. 2016, 51, 5695–5711. [Google Scholar] [CrossRef]
- Khraisheh, M.; Zadeh, K.M.; Alkhouzaam, A.I.; Turki, D.; Hassan, M.K.; Al Momani, F.; Zaidi, S.M.J. Characterization of Polysulfone/Diisopropylamine 1-Alkyl-3-Methylimidazolium Ionic Liquid Membranes: High Pressure Gas Separation Applications. Greenh. Gases Sci. Technol. 2020, 10, 795–808. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Liu, H. Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning. Polymers 2019, 11, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solaberrieta, I.; Jiménez, A.; Cacciotti, I.; Garrigós, M.C. Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene Oxide) Nanofibers. Polymers 2020, 12, 1323. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Roether, J.A.; Boccaccini, A.R.; Schubert, D.W. Fabrication of Electrospun Poly (3-Hydroxybutyrate)/Poly (ε-Caprolactone)/Silica Hybrid Fibermats with and without Calcium Addition. Eur. Polym. J. 2014, 55, 222–234. [Google Scholar] [CrossRef]
- Ma, H.; Hsiao, B.S.; Chu, B. Functionalized Electrospun Nanofibrous Microfiltration Membranes for Removal of Bacteria and Viruses. J. Memb. Sci. 2014, 452, 446–452. [Google Scholar] [CrossRef]
- Ojha, S.S.; Stevens, D.R.; Stano, K.; Hoffman, T.; Clarke, L.I.; Gorga, R.E. Characterization of Electrical and Mechanical Properties for Coaxial Nanofibers with Poly(Ethylene Oxide) (PEO) Core and Multiwalled Carbon Nanotube/PEO Sheath. Macromolecules 2008, 41, 2509–2513. [Google Scholar] [CrossRef]
- Xu, Y.; Zou, L.; Lu, H.; Kang, T. Effect of Different Solvent Systems on PHBV/PEO Electrospun Fibers. RSC Adv. 2017, 7, 4000–4010. [Google Scholar] [CrossRef] [Green Version]
Sample | Ra [µm] | Ry [µm] | Sm [µm] |
---|---|---|---|
PEO | 2.6 ± 0.4 | 16.8 ± 1.5 | 14.4 ± 1.8 |
PEO-PSF | 3.1 ± 0.6 | 19.1 ± 3.2 | 15.9 ± 3.2 |
PSF | 3.4 ± 0.8 | 15.6 ± 4.2 | 233.5 ± 35.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Herrera, J.E.; Maldonado-Saavedra, O.; Grande-Ramírez, J.R.; Guarneros-Nolasco, L.R.; González-Benito, J. Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties. Polymers 2023, 15, 3402. https://doi.org/10.3390/polym15163402
Domínguez-Herrera JE, Maldonado-Saavedra O, Grande-Ramírez JR, Guarneros-Nolasco LR, González-Benito J. Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties. Polymers. 2023; 15(16):3402. https://doi.org/10.3390/polym15163402
Chicago/Turabian StyleDomínguez-Herrera, José Ernesto, Octavio Maldonado-Saavedra, José Roberto Grande-Ramírez, Luis Rolando Guarneros-Nolasco, and Javier González-Benito. 2023. "Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties" Polymers 15, no. 16: 3402. https://doi.org/10.3390/polym15163402
APA StyleDomínguez-Herrera, J. E., Maldonado-Saavedra, O., Grande-Ramírez, J. R., Guarneros-Nolasco, L. R., & González-Benito, J. (2023). Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties. Polymers, 15(16), 3402. https://doi.org/10.3390/polym15163402