Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Composite Production
2.3. Tensile Test
2.4. Surface Morphology
3. Results
3.1. SEM Images of Glass Fiber
3.2. Tensile Properties
3.3. Observation of Fracture Surfaces
4. Discussion
4.1. Tensile Properties
- (1)
- Strong interface: the rule of mixtures assumes that there is a strong interface between the reinforcement (glass fiber) and the matrix material (PLA, in this case). In reality, the interface strength might not be ideal, which can influence the mechanical properties of the composite.
- (2)
- Isostrain conditions: the rule of mixtures assumes that both the matrix and the reinforcement are under isostrain conditions, meaning they deform together without any relative movement. In practical situations, this assumption might not hold true and could affect the overall mechanical behavior of the composite.
- (3)
- Homogenous and random fiber distribution: the rule of mixtures assumes that the fibers are homogenously distributed and randomly oriented within the matrix. In real-world scenarios, achieving perfect homogeneity and random orientation can be challenging during the 3D printing process, leading to deviations from the idealized model.
4.2. Observation of Fracture Surfaces
4.3. The Functions of Glass Fiber
5. Conclusions
- (1)
- The tensile strength increases with an increase in the glass fiber reinforcement up to a limit of 2.39 wt%. Afterwards, the tensile strength reduces with the increased fiber content, where the presenting values are almost similar to those of pure thermoplastic.
- (2)
- Effects of glass fiber reinforcement on the elastic modulus presented a behavior similar to tensile strength. However, the smallest elastic modulus value was found for the neat PLA.
- (3)
- From the morphology analysis, the presence of in situ glass fibers improved the intralayer bonds but reduced the interlayer bonds of the deposited filament. This is because the inclusion of glass fiber reduced heat transfer between the PLA-deposited layers, agitating neck growth between the PLA layers. The shapes of the deposited filament were deformed from oval to rounded rectangular, and the porosities in the printed samples were reduced with the increase in glass fiber in the PLA composite. This indicates that the inclusion of glass fiber affected the temperature distribution of the subsystem and then the rheology of the deposited PLA.
- (4)
- The new printing method using the fiber doser improved the tensile performance by reducing the void between the deposited PLA layers; however, excessive fiber content weakened the interlayer bond and deteriorated the tensile performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Gu, P.; Li, L. Fabrication of biomedical prototypes with locally controlled properties using FDM. CIRP Ann. Manuf. Technol. 2002, 51, 181–184. [Google Scholar] [CrossRef]
- Centola, M.; Rainer, A.; Spadaccio, C.; De Porcellinis, S.; Genovese, J.A.; Trombetta, M. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2010, 2, 014102. [Google Scholar] [CrossRef]
- Masood, S.H.; Song, W.Q. Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater. Des. 2004, 25, 587–594. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef]
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Casavola, C.; Cazzato, A.; Moramarco, V.; Pappalettere, C. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 2016, 90, 453–458. [Google Scholar] [CrossRef]
- Ismail, K.I.; Yap, T.C.; Ahmed, R. 3D-Printed Fiber-Reinforced Polymer Composites by Fused: Fiber length and fiber implementation techniques. Polymers 2022, 14, 4659. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Chalgham, A.; Ehrmann, A.; Wickenkamp, I. Mechanical properties of fdm printed pla parts before and after thermal treatment. Polymers 2021, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Onwubolu, G.C.; Rayegani, F. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. Int. J. Manuf. Eng. 2014, 2014, 598531. [Google Scholar] [CrossRef]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. J. Manuf. Process. 2016, 21, 39–45. [Google Scholar] [CrossRef]
- Pang, R.; Lai, M.K.; Ismail, K.I.; Yap, T.C. The Effect of Printing Temperature on Bonding Quality and Tensile Properties of Fused Deposition Modelling 3D-Printed Parts. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1257, 012031. [Google Scholar] [CrossRef]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Rasouli, S.A. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. Mater. Eng. Perform. 2021, 30, 5441–5454. [Google Scholar] [CrossRef]
- Gray Iv, R.W.; Baird, D.G.; Bøhn, J.H. Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym. Compos. 1998, 19, 383–394. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. 2001, 29, 181–183. [Google Scholar] [CrossRef]
- Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; Barrera, E.V. Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Li, B.; Wan, G.; Zhao, G.; Zhang, A. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int. J. Biol. Macromol. 2019, 129, 448–459. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Hu, X.; Yue, C.-Y. Effects of Fiber Length and Orientation Distributions on the Mechanical Properties of Short-Fiber-Reinforced Polymers—A Review. Mater. Sci. Res. Int. 1999, 5, 74–83. [Google Scholar]
- Chokshi, S.; Gohil, P. Experimental Investigation and Mathematical Modeling of Longitudinally Placed Natural Fiber Reinforced Polymeric Composites Including Interphase Volume Fraction. Fibers Polym. 2022, 23, 488–501. [Google Scholar] [CrossRef]
- Callister, W.D., Jr.; Rethwisch, D.G. Characteristics, Application, and Processing of Polymers; Springer: Boston, MA, USA, 2018; ISBN 9781119321590. [Google Scholar]
- Yee, R.Y.; Stephens, T.S. A TGA technique for determining graphite fiber content in epoxy composites. Thermochim. Acta 1996, 272, 191–199. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Ozkoc, G.; Bayram, G.; Bayramli, E. Short Glass Fiber Reinforced ABS and ABS/PA6 Composites: Processing and Characterization. Polym. Compos. 2005, 26, 745–755. [Google Scholar] [CrossRef]
- Ismail, K.I.; Ramarad, S.; Yap, T.C. Design and Fabrication of an In Situ Short-Fiber Doser for Fused Filament Fabrication 3D Printer: A Novel Method to. Inventions 2023, 8, 10. [Google Scholar] [CrossRef]
- Krajangsawasdi, N.; Blok, L.G.; Hamerton, I.; Longana, M.L.; Woods, B.K.S.; Ivanov, D.S. Fused deposition modelling of fibre reinforced polymer composites: A parametric review. J. Compos. Sci. 2021, 5, 29. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Nashruffi, M.A.; Ismail, K.I.; Yap, T.C. The Effect of Printing Orientation on the Mechanical Properties of FDM 3D Printed Parts; Springer: Singapore, 2021; ISBN 9789811928895. [Google Scholar]
- Shamsuri, A.A.; Darus, S.A.A.Z.M. Statistical Analysis of Tensile Strength and Flexural Strength Data from Universal Testing Machine. Asian J. Probab. Stat. 2020, 9, 54–62. [Google Scholar] [CrossRef]
- Hartman, D.; Greenwood, M.E.; Miller, D.M. High strength glass fibers. Agy 1996, 1–11. [Google Scholar]
- Rinaldi, M.; Bragaglia, M.; Nanni, F. Mechanical performance of 3D printed polyether-ether-ketone nanocomposites: An experimental and analytic approach. Compos. Struct. 2023, 305, 116459. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W. Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction. Def. Technol. 2022, in press. [CrossRef]
- Zhang, Z.; Long, Y.; Yang, Z.; Fu, K.; Li, Y. An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107162. [Google Scholar] [CrossRef]
- He, Q.; Wang, H.; Fu, K.; Ye, L. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance. Compos. Sci. Technol. 2020, 191, 108077. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Cui, X.; Guo, W. Crystallization behavior and properties of glass fiber reinforced polypropylene composites. Polymers 2019, 11, 1198. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro- and Micro-Structural Properties. Macromol. Mater. Eng. 2023, 308, 2200568. [Google Scholar] [CrossRef]
- Riddick, J.C.; Haile, M.A.; Von Wahlde, R.; Cole, D.P.; Bamiduro, O.; Johnson, T.E. Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit. Manuf. 2016, 11, 49–59. [Google Scholar] [CrossRef]
- Penumakala, P.K.; Santo, J.; Thomas, A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B Eng. 2020, 201, 108336. [Google Scholar] [CrossRef]
- Caminero, M.A. Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials 2020, 13, 1924. [Google Scholar] [CrossRef]
- Laureto, J.; Tomasi, J.; King, J.A.; Pearce, J.M. Thermal properties of 3-D printed polylactic acid-metal composites. Prog. Addit. Manuf. 2017, 2, 57–71. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Wan, G.; Li, B.; Zhao, G. Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polym. Guildf. 2019, 181, 121803. [Google Scholar] [CrossRef]
- Elhattab, K.; Bhaduri, S.B.; Sikder, P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers 2022, 14, 1222. [Google Scholar] [CrossRef] [PubMed]
Polymer | Fiber Content (%) | Strength (MPa) | Modulus (GPa) | Ref. |
---|---|---|---|---|
PP | 30 | 30–35 | - | [26] |
PP | - | 45–50 | 5–8.9 | [21] |
PP | 30 | 32 | 0.95–1.5 | [7] |
ABS | 10, 20, 30 | 43.4–93 | 2.24–8.41 | [27] |
ABS | 15, 20, 25, 30 | 58.6 | - | [18] |
Specifications | Average Value |
---|---|
Model | MEF-13-100 |
Color | White |
Glass type | E-Glass |
Mesh | 100 |
Fiber diameter | 13 µm |
Fiber length | 160 µm |
Aspect ratio | 12:1 |
Bulk density | 0.67 g/cc |
Moisture content | <1.5% |
Loss of ignition | <1% |
Alkali content/R2O (%) | <0.80 |
Sizing | Silane |
Contamination | Free from dirt, lumps, unmilled fiber |
Parameter | Standard Value |
---|---|
Nozzle temperature (°C) | 210 |
Heating bed temperature (°C) | 70 |
Number of shells | 3 |
Infill pattern | Rectilinear |
Infill density (%) | 100 |
Raster angle (°) | [+45/−45] |
Layer thickness (mm) | 0.2 |
Printing speed (mm/min) | 60 |
Build orientation | Flat |
Name | Contents of Glass Fiber (Mass Fraction, %) |
---|---|
PLA | 0 |
GFPLA-1 | 1.02 |
GFPLA-2.4 | 2.39 |
GFPLA-5 | 4.98 |
Sample | GF Content (Mass Fraction, wt%) | GF Content (Volume Fraction, %) | Ec (Predicted) | Ec (Experimental) |
---|---|---|---|---|
PLA | 0 | 0 | 0.96 | 0.96 |
GFPLA-1 | 1.02 | 1.87 | 1.2113 | 1.0133 |
GFPLA-2.4 | 2.39 | 4.34 | 1.5433 | 1.0387 |
GFPLA-5 | 4.98 | 8.84 | 2.1481 | 0.9892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, K.I.; Pang, R.; Ahmed, R.; Yap, T.C. Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA. Polymers 2023, 15, 3436. https://doi.org/10.3390/polym15163436
Ismail KI, Pang R, Ahmed R, Yap TC. Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA. Polymers. 2023; 15(16):3436. https://doi.org/10.3390/polym15163436
Chicago/Turabian StyleIsmail, Khairul Izwan, Rayson Pang, Rehan Ahmed, and Tze Chuen Yap. 2023. "Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA" Polymers 15, no. 16: 3436. https://doi.org/10.3390/polym15163436
APA StyleIsmail, K. I., Pang, R., Ahmed, R., & Yap, T. C. (2023). Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA. Polymers, 15(16), 3436. https://doi.org/10.3390/polym15163436