Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of PTAA FET Sensor
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P.; Hu, W. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kang, Y.; Wang, L.; Zhang, H.; Wang, Y.; Wang, Y. Organic/inorganic hybrid sensors: A review. Sens. Actuators B Chem. 2013, 182, 467–481. [Google Scholar] [CrossRef]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Kawase, T.; Friend, R.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E.P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, R.R.; Hösel, M.; Krebs, F.C. Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. B Polym. 2013, 51, 16–34. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef]
- Lee, W.H.; Park, Y.D. Organic semiconductor/insulator polymer blends for high-performance organic transistors. Polymers 2014, 6, 1057–1073. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Lee, J.H.; Chun, J.H.; Chung, H.-J.; Lee, W.H. Microstructural Control of Soluble Acene Crystals for Field-Effect Transistor Gas Sensors. Nanomaterials 2022, 12, 2564. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Kwak, D.H.; Kwon, J.E.; Kim, B.-G.; Lee, W.H. NO2-Affinitive Conjugated Polymer for Selective Sub-Parts-Per-Billion NO2 Detection in a Field-Effect Transistor Sensor. J. Am. Chem. Soc. 2021, 13, 31910–31918. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Hwang, S.; Kye, H.; Kim, M.S.; Lee, W.H.; Kim, B.-G. Side-Chain-Assisted Transition of Conjugated Polymers from a Semiconductor to Conductor and Comparison of Their NO2 Sensing Characteristics. Materials 2023, 16, 2877. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.; Lee, H.; Choi, H.H.; Chae, H.; Kim, Y.; Yang, S.J.; Anthony, J.E.; Jang, H.W.; Won, S.M. Marangoni Flow Driven via Hole Structure of Soluble Acene–Polymer Blends for Selective Nitrogen Dioxide Sensing. Adv. Funct. Mater. 2023, 33, 2215215. [Google Scholar] [CrossRef]
- Das, A.; Dost, R.; Richardson, T.; Grell, M.; Morrison, J.J.; Turner, M.L. A nitrogen dioxide sensor based on an organic transistor constructed from amorphous semiconducting polymers. Adv. Mater. 2007, 19, 4018–4023. [Google Scholar] [CrossRef]
- Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S.E.; Anthopoulos, T.; McCulloch, I. Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J. Am. Chem. Soc. 2009, 131, 10814–10815. [Google Scholar] [CrossRef]
- Smith, J.; Hamilton, R.; Qi, Y.; Kahn, A.; Bradley, D.D.; Heeney, M.; McCulloch, I.; Anthopoulos, T.D. The Influence of Film Morphology in High-Mobility Small-Molecule: Polymer Blend Organic Transistors. Adv. Funct. Mater. 2010, 20, 2330–2337. [Google Scholar] [CrossRef]
- Wedge, D.C.; Das, A.; Dost, R.; Kettle, J.; Madec, M.-B.; Morrison, J.J.; Grell, M.; Kell, D.B.; Richardson, T.H.; Yeates, S. Real-time vapour sensing using an OFET-based electronic nose and genetic programming. Sens. Actuators B Chem. 2009, 143, 365–372. [Google Scholar] [CrossRef]
- Oh, S.; Khan, M.R.R.; Choi, G.; Seo, J.; Park, E.; An, T.K.; Park, Y.D.; Lee, H.S. Advanced Organic Transistor-Based Sensors Utilizing a Solvatochromic Medium with Twisted Intramolecular Charge-Transfer Behavior and Its Application to Ammonia Gas Detection. ACS Appl. Mater. Interfaces 2021, 13, 56385–56393. [Google Scholar] [CrossRef]
- Park, Y.D.; Lim, J.A.; Lee, H.S.; Cho, K. Interface engineering in organic transistors. Mater. Today 2007, 10, 46–54. [Google Scholar] [CrossRef]
- Yoon, M.-H.; Kim, C.; Facchetti, A.; Marks, T.J. Gate dielectric chemical structure−organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 2006, 128, 12851–12869. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yoo, H. Self-assembled monolayers: Versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers. Micromachines 2021, 12, 565. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, D.H.; Cho, J.H.; Hwang, M.; Jang, Y.; Cho, K. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. J. Am. Chem. Soc. 2008, 130, 10556–10564. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Virkar, A.A.; Mannsfeld, S.; Oh, J.H.; Toney, M.; Locklin, J.; Bao, Z. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 2009, 131, 9396–9404. [Google Scholar] [CrossRef] [PubMed]
- Schultz, T.; Lenz, T.; Kotadiya, N.; Heimel, G.; Glasser, G.; Berger, R.; Blom, P.W.; Amsalem, P.; de Leeuw, D.M.; Koch, N. Reliable work function determination of multicomponent surfaces and interfaces: The role of electrostatic potentials in ultraviolet photoelectron spectroscopy. Adv. Mater. Interfaces 2017, 4, 1700324. [Google Scholar] [CrossRef]
- Lee, W.H.; Park, J.; Sim, S.H.; Jo, S.B.; Kim, K.S.; Hong, B.H.; Cho, K. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv. Mater. 2011, 23, 1752–1756. [Google Scholar] [CrossRef]
Mobility, μ [10−5cm2/(V·s)] | VTH [V] | Turn On V [V] | SS [V/dec] | |
---|---|---|---|---|
2.5 mg/mL Top Bare | 3.28 | −8.21 | −9.30 | 3.56 |
2.5 mg/mL Bottom Bare | 0.535 | −31.7 | −32.9 | 5.72 |
5 mg/mL Top Bare | 0.603 | −23.1 | −24.4 | 5.33 |
5 mg/mL Bottom Bare | 0.598 | −30.0 | −29.6 | 5.63 |
5 mg/mL Top ODTS | 44.3 | −19.4 | −19.6 | 3.33 |
5 mg/mL Bottom ODTS | 4.62 | −16.9 | −17.5 | 4.75 |
Response Rate (s−1) | Recovery Rate (s−1) | |
---|---|---|
2.5 mg/mL Top Bare | 0.198 | 0.000816 |
2.5 mg/mL Bottom Bare | 0.0666 | 0.000878 |
5 mg/mL Top Bare | 0.106 | 0.000861 |
5 mg/mL Bottom Bare | 0.118 | 0.000870 |
5 mg/mL Top ODTS | 1.77 | 0.000979 |
5 mg/mL Bottom ODTS | 0.521 | 0.000927 |
Before Mobility, μBefore [10−5 cm2/(V·s)] | After Mobility, μAfter [10−5 cm2/(V·s)] | μAfter/μBefore | |
---|---|---|---|
2.5 mg/mL Top Bare | 3.28 | 21.0 | 6.40 |
2.5 mg/mL Bottom Bare | 0.535 | 1.24 | 2.32 |
5 mg/mL Top Bare | 0.603 | 6.65 | 11.0 |
5 mg/mL Bottom Bare | 0.598 | 2.28 | 3.81 |
5 mg/mL Top ODTS | 44.3 | 309 | 6.98 |
5 mg/mL Bottom ODTS | 4.62 | 29.6 | 6.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Lee, D.; Nguyen, K.V.; Lee, J.H.; Lee, W.H. Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering. Polymers 2023, 15, 3463. https://doi.org/10.3390/polym15163463
Kim Y, Lee D, Nguyen KV, Lee JH, Lee WH. Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering. Polymers. 2023; 15(16):3463. https://doi.org/10.3390/polym15163463
Chicago/Turabian StyleKim, Youngnan, Donggeun Lee, Ky Van Nguyen, Jung Hun Lee, and Wi Hyoung Lee. 2023. "Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering" Polymers 15, no. 16: 3463. https://doi.org/10.3390/polym15163463
APA StyleKim, Y., Lee, D., Nguyen, K. V., Lee, J. H., & Lee, W. H. (2023). Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering. Polymers, 15(16), 3463. https://doi.org/10.3390/polym15163463