All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Device Fabrication
2.3. Device Characterization
2.4. Analysis and Characterization
3. Results and Discussion
4. Discussions on Film Thickness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yi, J.; Ma, R.; Ding, L.; Dela Pena, T.A.; Liu, H.; Chen, J.; Zhang, C.; Zhao, C.; Lu, W.; et al. Isomeric Solid Additive Enables High-Efficiency Polymer Solar Cells Developed Using a Benzo-difuran-based Donor Polymer. Adv. Mater. 2023, 35, e2301231. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, B.W.; Ma, C.Q.; Huang, F.; Feng, G.T.; Chen, H.Z.; Hou, J.H.; Yan, L.P.; Wei, Q.Y.; Luo, Q.; et al. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2022, 65, 224–268. [Google Scholar] [CrossRef]
- Jia, Z.; Ma, Q.; Chen, Z.; Meng, L.; Jain, N.; Angunawela, I.; Qin, S.; Kong, X.; Li, X.; Yang, Y.M.; et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 2023, 14, 1236. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Y.; Chen, Z.; Zhan, L.; Zuo, L.; He, C.; Bi, Z.; Yao, N.; Li, S.; Zhou, G.; et al. Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: From molecule to device. Energy Environ. Sci. 2022, 15, 855–865. [Google Scholar] [CrossRef]
- Fan, Q.; Fu, H.; Luo, Z.; Oh, J.; Fan, B.; Lin, F.; Yang, C.; Jen, A.K.Y. Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%. Nano Energy 2022, 92, 106718. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; et al. Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. J. Am. Chem. Soc. 2022, 144, 8658–8668. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Li, Y.; Chen, Z.; Wu, H.; Lin, Y.; Gao, Y.; Wang, M.; Ding, G.; Min, J.; et al. Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluents Strategy for Certified 19.4% Efficiency. Adv. Mater. 2023, 35, e2300400. [Google Scholar] [CrossRef]
- Bi, P.; Wang, J.; Cui, Y.; Zhang, J.; Zhang, T.; Chen, Z.; Qiao, J.; Dai, J.; Zhang, S.; Hao, X.; et al. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase Transition Kinetics. Adv. Mater. 2023, 35, e2210865. [Google Scholar] [CrossRef]
- Gao, W.; Qi, F.; Peng, Z.; Lin, F.R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C.-S.; Marks, T.J.; et al. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudo-Symmetric Electron Acceptor. Adv. Mater. 2022, 34, 2202089. [Google Scholar] [CrossRef]
- Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. Adv. Mater. 2022, 34, e2109516. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, H.; Wang, L.; Zhang, G.; Lu, G.; Yu, H.; Lu, G.; Han, Y.; Qiu, M.; Li, S.; et al. Efficient All-Polymer Solar Cells with Sequentially Processed Active Layers. Polymers 2022, 14, 2058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, L.; Zhao, C.; Wang, Y.; Hu, R.; Che, J.; He, S.; Chen, W.; Cao, L.; Luo, Z.; et al. Efficient All-Polymer Solar Cells Enabled by Interface Engineering. Polymers 2022, 14, 3835. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, H.; Wu, X.; Zhao, D.; Zhang, S.F.; Zou, X.H.; Li, B.; Gao, D.P.; Li, Z.; Xia, X.X.; et al. Boosting the Fill Factor through Sequential Deposition and Homo Hydrocarbon Solvent toward Efficient and Stable All-Polymer Solar Cells. Adv. Energy Mater. 2022, 12, 2202729. [Google Scholar] [CrossRef]
- Kim, H.K.; Yu, H.; Pan, M.; Shi, X.; Zhao, H.; Qi, Z.; Liu, W.; Ma, W.; Yan, H.; Chen, S. Linker Unit Modulation of Polymer Acceptors Enables Highly Efficient Air-Processed All-Polymer Solar Cells. Adv. Sci. 2022, 9, 2202223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.G.; Li, Y. Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433. [Google Scholar] [CrossRef]
- Kataria, M.; Chau, H.D.; Kwon, N.Y.; Park, S.H.; Cho, M.J.; Choi, D.H. Y-Series-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells in Binary and Non-binary Systems. ACS Energy Lett. 2022, 7, 3835–3854. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, H.; Feng, K.; Guo, X. Polymer Acceptors for High-Performance All-Polymer Solar Cells. Chemistry 2022, 28, 202200222. [Google Scholar] [CrossRef]
- Wan, J.; Zeng, L.; Liao, X.; Chen, Z.; Liu, S.; Zhu, P.; Zhu, H.; Chen, Y. All-Green Solvent-Processed Planar Heterojunction Organic Solar Cells with Outstanding Power Conversion Efficiency of 16%. Adv. Funct. Mater. 2022, 32, 2107567. [Google Scholar] [CrossRef]
- Liu, J.; Deng, J.; Zhu, Y.; Geng, X.; Zhang, L.; Jeong, S.Y.; Zhou, D.; Woo, H.Y.; Chen, D.; Wu, F.; et al. Regulation of Polymer Configurations Enables Green Solvent-Processed Large-Area Binary All-Polymer Solar Cells With Breakthrough Performance and High Efficiency Stretchability Factor. Adv. Mater. 2023, 35, 2208008. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Wu, X.; Yao, S.; Hu, X.; Chen, Y. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci. 2023, 16, 76–88. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, R.; Hou, Y.; Zhu, L.; Zou, X.; Xiong, W.; Hu, H.; Wang, L.; Yu, H.; Wang, Y.; et al. 18.1% Ternary All-Polymer Solar Cells Sequentially Processed from Hydrocarbon Solvent with Enhanced Stability. Adv. Energy Mater. 2023, 13, 2300904. [Google Scholar] [CrossRef]
- Sun, R.; Wang, T.; Fan, Q.; Wu, M.; Yang, X.; Wu, X.; Yu, Y.; Xia, X.; Cui, F.; Wan, J.; et al. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule 2023, 7, 221–237. [Google Scholar] [CrossRef]
- Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Zhang, C.; Fu, Z.; Jee, M.H.; Hao, X.; Woo, H.Y.; Sun, Y. Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive. Adv. Mater. 2023, 35, e2301906. [Google Scholar] [CrossRef]
- Ma, R.; Fan, Q.; Dela Pena, T.A.; Wu, B.; Liu, H.; Wu, Q.; Wei, Q.; Wu, J.; Lu, X.; Li, M.; et al. Unveiling the Morphological and Physical Mechanism of Burn-in Loss Alleviation by Ternary Matrix Towards Stable and Efficient All-Polymer Solar Cells. Adv. Mater. 2023, 35, 2212275. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Peng, W.; Lin, Y.; Jeong, S.Y.; Genene, Z.; Magomedov, A.; Woo, H.Y.; Chen, C.; Wahyudi, W.; Tao, Q.; Deng, J.; et al. Over 18% ternary polymer solar cells enabled by a terpolymer as the third component. Nano Energy 2022, 92, 106681. [Google Scholar] [CrossRef]
- He, C.; Chen, Z.; Wang, T.; Shen, Z.; Li, Y.; Zhou, J.; Yu, J.; Fang, H.; Li, Y.; Li, S.; et al. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nat. Commun. 2022, 13, 2598. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B.W.; Zhu, H.; Ma, Z.; et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 2021, 12, 309. [Google Scholar] [CrossRef]
- Song, X.; Xu, H.; Jiang, X.; Gao, S.; Zhou, X.; Xu, S.; Li, J.; Yu, J.; Liu, W.; Zhu, W.; et al. Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy Environ. Sci. 2023, 16, 3441–3452. [Google Scholar] [CrossRef]
- Wang, J.; Han, C.; Han, J.; Bi, F.; Sun, X.; Wen, S.; Yang, C.; Yang, C.; Bao, X.; Chu, J. Synergetic Strategy for Highly Efficient and Super Flexible Thick-film Organic Solar Cells. Adv. Energy Mater. 2022, 12, 2201614. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Xu, C.; Wang, X.; Son, J.H.; Jeong, S.Y.; Zhang, Y.; Zhang, C.; Wang, K.; Niu, L.; et al. Over 17.7% efficiency ternary-blend organic solar cells with low energy-loss and good thickness-tolerance. Chem. Eng. J. 2022, 428. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Q.; Lu, G.; Ryu, H.S.; Li, Y.; Jin, H.; Chen, Z.; Tang, Z.; Lu, G.; Hao, X.; et al. Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 2022, 13, 2369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, H.; Meng, L.; Wang, Y.; Chang, M.; Li, S.; Guo, Z.; Li, C.; Zheng, N.; Xie, Z.; et al. High Performance Thick-Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Adv. Energy Mater. 2019, 9, 1902688. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.; Zu, Y.; Liao, Q.; Xu, B.; An, C.; Zhang, S.; Hou, J. A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem. 2019, 63, 21–27. [Google Scholar] [CrossRef]
- Zhong, H.; Ye, L.; Chen, J.-Y.; Jo, S.B.; Chueh, C.-C.; Carpenter, J.H.; Ade, H.; Jen, A.K.Y. A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. J. Mater. Chem. A 2017, 5, 10517–10525. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X.-F.; Yin, Q.; Liang, Z.; et al. Thick Film Polymer Solar Cells Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11%. Adv. Energy Mater. 2017, 7, 1700944. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Ma, R.J.; Oh, J.; Wang, L.H.; Zhang, G.P.; Wang, Y.J.; He, S.Y.; Zhu, L.X.; Yang, C.; Zhang, G.Y.; et al. Highly efficient and stable binary all-polymer solar cells enabled by sequential deposition processing tuned microstructures. J. Mater. Chem. C 2022, 10, 17899–17906. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Zhang, G.; Wang, Y.; Hu, R.; Huang, H.; Qiu, M.; Li, S.; Zhang, G. Sequential Processing Enables 17% All-Polymer Solar Cells via Non-Halogen Organic Solvent. Molecules 2022, 27, 5739. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Yi, J.C.; Wang, L.H.; Lu, G.Y.; Huang, H.; Kim, H.; Yu, H.; Xie, C.; You, P.; Lu, G.H.; et al. An improved performance of all polymer solar cells enabled by sequential processing via non-halogenated solvents. Nano Energy 2022, 104, 107872. [Google Scholar] [CrossRef]
- Hawks, S.A.; Aguirre, J.C.; Schelhas, L.T.; Thompson, R.J.; Huber, R.C.; Ferreira, A.S.; Zhang, G.Y.; Herzing, A.A.; Tolbert, S.H.; Schwartz, B.J. Comparing Matched Polymer:Fullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance. J. Phys. Chem. C 2014, 118, 17413–17425. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Huber, R.C.; Ferreira, A.S.; Boyd, S.D.; Luscombe, C.K.; Tolbert, S.H.; Schwartz, B.J. Crystallinity Effects in Sequentially Processed and Blend-Cast Bulk-Heterojunction Polymer/Fullerene Photovoltaics. J. Phys. Chem. C 2014, 118, 18424–18435. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Hawks, S.A.; Ngo, C.; Schelhas, L.T.; Scholes, D.T.; Kang, H.; Aguirre, J.C.; Tolbert, S.H.; Schwartz, B.J. Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Appl. Mater. Interfaces 2015, 7, 25247–25258. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.T.; Aubry, T.J.; Scholes, D.T.; Hawks, S.A.; Schwartz, B.J. Sequential processing: A rational route for bulk heterojunction formation via polymer swelling. In World Scientific Handbook of Organic Optoelectronic Devices; World Scientific: Singapore, 2018; pp. 309–348. [Google Scholar] [CrossRef]
Thickness [nm] | Active Layer | Voc [V] | Jsc [mA/cm2] | FF | PCE * [%] | TPC [μs] | TPV [μs] | S | nid,d |
---|---|---|---|---|---|---|---|---|---|
75 | BC | 0.913 ± 0.003 (0.911) | 24.6 ± 0.3 (24.6) | 0.682 ± 0.012 (0.694) | 15.3 ± 0.2 (15.6) | 0.204 ± 0.017 | 0.410 ± 0.007 | 0.994 | 1.44 |
SqP | 0.911 ± 0.003 (0.915) | 25.4 ± 0.5 (25.3) | 0.684 ± 0.014 (0.699) | 15.8 ± 0.1 (16.1) | 0.176 ± 0.003 | 0.525 ± 0.039 | 0.997 | 1.43 | |
185 | BC | 0.906 ± 0.06 (0.912) | 24.1 ± 0.4 (24.2) | 0.570 ± 0.024 (0.619) | 12.4 ± 0.5 (13.7) | 0.196 ± 0.010 | 0.746 ± 0.018 | 0.996 | 1.60 |
SqP | 0.905 ± 0.08 (0.913) | 24.2 ± 0.6 (25.0) | 0.634 ± 0.013 (0.624) | 13.9 ± 0.2 (14.2) | 0.190 ± 0.004 | 1.095 ± 0.014 | 0.999 | 1.56 | |
310 | BC | 0.897 ± 0.02 (0.896) | 25.8 ± 0.4 (26.5) | 0.524 ± 0.006 (0.524) | 12.1 ± 0.2 (12.4) | 0.223 ± 0.003 | 0.544 ± 0.009 | 0.971 | 1.71 |
SqP | 0.902 ± 0.001 (0.902) | 25.1 ± 0.6 (26.3) | 0.609 ± 0.006 (0.600) | 13.7 ± 0.3 (14.2) | 0.196 ± 0.007 | 0.726 ± 0.016 | 0.954 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, C.; Cai, Z.; Wang, L.; Zhu, L.; Huang, H.; Zhang, G.; You, P.; Xie, C.; Wang, Y.; et al. All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers 2023, 15, 3462. https://doi.org/10.3390/polym15163462
Wang Y, Zhao C, Cai Z, Wang L, Zhu L, Huang H, Zhang G, You P, Xie C, Wang Y, et al. All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers. 2023; 15(16):3462. https://doi.org/10.3390/polym15163462
Chicago/Turabian StyleWang, Yajie, Chaoyue Zhao, Ziqi Cai, Lihong Wang, Liangxiang Zhu, Hui Huang, Guoping Zhang, Peng You, Chen Xie, Yaping Wang, and et al. 2023. "All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer" Polymers 15, no. 16: 3462. https://doi.org/10.3390/polym15163462
APA StyleWang, Y., Zhao, C., Cai, Z., Wang, L., Zhu, L., Huang, H., Zhang, G., You, P., Xie, C., Wang, Y., Bai, Q., Yang, T., Li, S., & Zhang, G. (2023). All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers, 15(16), 3462. https://doi.org/10.3390/polym15163462