Optimization and Efficiency Enhancement of Modified Polymer Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCAPS-1D Software and Mathematical Modeling
2.2. Device Architecture
2.3. Parameters Used in the Simulation
3. Results and Discussions
3.1. Current Density-Voltage (J-V) Characteristics and the Energy-Band Alignment
- Ec—in a semiconductor, the conduction band comprises the lowest occupied molecular orbital (LUMO). It is the highest energy level where the electrons can move freely within the solid [37].
- Fn—represents the Fermi level of the n-type material, where the probability of an electron is 0.5. The Fermi level acts as a boundary; it distinguishes the energy levels where there is a high likelihood of the existence of electrons from those where their presence is relatively unlikely. In an ETL or in n-type semiconductor, the Fn is close to the conduction band due to a surplus of electrons [37].
- Fp—represents the Fermi level of the holes, which is located near the valence band due to surplus of holes [37].
- Ev—in a solid, the valence band represents the lowest energy level, where the electrons are tightly bound to the atoms and lack freedom of movement. In solar cells, this VB is composed of the semiconductor material’s highest occupied molecular orbital (HOMO) [37].
3.2. Impact of Active-Layer Thickness on OSC
3.3. Active-Layer Defect Density Effect on The Performance of Solar Cells
3.4. Effect of Temperature
3.5. Effect of Reflective Coating
3.6. Hole Transport Layer Doping Density
3.7. Electron Transport Layer Doping Effect
3.8. Electric Field at Interface
3.9. Comparison of Simulation Results with Experimental Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alahmadi, A.N.M. Design of an Efficient PTB7:PC70BM-Based Polymer Solar Cell for 8% Efficiency. Polymers 2022, 14, 889. [Google Scholar] [CrossRef]
- Seri, M.; Mercuri, F.; Ruani, G.; Feng, Y.; Li, M.; Xu, Z.X.; Muccini, M. Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technol. 2021, 9, 2000901. [Google Scholar] [CrossRef]
- Peng, W.; Lin, Y.; Jeong, S.Y.; Genene, Z.; Magomedov, A.; Woo, H.Y.; Chen, C.; Wahyudi, W.; Tao, Q.; Deng, J.; et al. Over 18% Ternary Polymer Solar Cells Enabled by a Terpolymer as the Third Component. Nano Energy 2022, 92, 106681. [Google Scholar] [CrossRef]
- Ghosekar, I.C.; Patil, G.C. Review on Performance Analysis of P3HT:PCBM-Based Bulk Heterojunction Organic Solar Cells. Semicond. Sci. Technol. 2021, 36, 045005. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Karimov, K.S. Improved Organic Solar Cell by Incorporating Silver Nanoparticles Embedded Polyaniline as Buffer Layer. Solid. State Electron. 2020, 163, 107658. [Google Scholar] [CrossRef]
- Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J. A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor. Adv. Mater. 2018, 30, e1707170. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, M.; Wang, X.; Yang, F.; Meng, X. Recent Progress in Organic-Inorganic Hybrid Solar Cells. J. Mater. Chem. A Mater. 2013, 1, 8694–8709. [Google Scholar] [CrossRef]
- Sharma, A.; Watkins, S.E.; Lewis, D.A.; Andersson, G. Effect of Indium and Tin Contamination on the Efficiency and Electronic Properties of Organic Bulk Hetero-Junction Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3251–3255. [Google Scholar] [CrossRef]
- Li, H.C.; Koteswara Rao, K.; Jeng, J.Y.; Hsiao, Y.J.; Guo, T.F.; Jeng, Y.R.; Wen, T.C. Nano-Scale Mechanical Properties of Polymer/Fullerene Bulk Hetero-Junction Films and Their Influence on Photovoltaic Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2976–2980. [Google Scholar] [CrossRef]
- Bundgaard, E.; Krebs, F.C. Low Band Gap Polymers for Organic Photovoltaics. Sol. Energy Mater. Sol. Cells 2007, 91, 954–985. [Google Scholar] [CrossRef]
- Sharma, N.; Gupta, S.K.; Singh Negi, C.M. Influence of Active Layer Thickness on Photovoltaic Performance of PTB7:PC70BM Bulk Heterojunction Solar Cell. Superlattices Microstruct. 2019, 135, 106278. [Google Scholar] [CrossRef]
- Ramírez-Como, M.; Balderrama, V.S.; Sacramento, A.; Marsal, L.F.; Lastra, G.; Estrada, M. Fabrication and Characterization of Inverted Organic PTB7:PC70BM Solar Cells Using Hf-In-ZnO as Electron Transport Layer. Sol. Energy 2019, 181, 386–395. [Google Scholar] [CrossRef]
- Dridi, C.; Touafek, N.; Mahamdi, R. Inverted PTB7:PC70BM Bulk Heterojunction Solar Cell Device Simulations for Various Inorganic Hole Transport Materials. Optik 2022, 252, 168447. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Feng, L.W.; Gu, C.; Li, G.; Su, N.; Wang, G.; Swick, S.M.; Huang, W.; Guo, X.; et al. Hole (Donor) and Electron (Acceptor) Transporting Organic Semiconductors for Bulk-Heterojunction Solar Cells. EnergyChem 2020, 2, 100042. [Google Scholar] [CrossRef]
- Deng, M.; Xu, X.; Duan, Y.; Yu, L.; Li, R.; Peng, Q. Y-Type Non-Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Adv. Mater. 2023, 35, e2210760. [Google Scholar] [CrossRef]
- Li, D.; Deng, N.; Fu, Y.; Guo, C.; Zhou, B.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K.; et al. Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2023, 35, e2208211. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, S.; Wang, J.; Xu, Y.; Hou, J. Recent Advances in Non-Fullerene Organic Solar Cells: From Lab to Fab. Chem. Commun. 2020, 56, 14337–14352. [Google Scholar] [CrossRef]
- Liu, X.; Xie, B.; Duan, C.; Wang, Z.; Fan, B.; Zhang, K.; Lin, B.; Colberts, F.J.M.; Ma, W.; Janssen, R.A.J.; et al. A High Dielectric Constant Non-Fullerene Acceptor for Efficient Bulk-Heterojunction Organic Solar Cells. J. Mater. Chem. A Mater. 2018, 6, 395–403. [Google Scholar] [CrossRef]
- Torabi, S.; Jahani, F.; Van Severen, I.; Kanimozhi, C.; Patil, S.; Havenith, R.W.A.; Chiechi, R.C.; Lutsen, L.; Vanderzande, D.J.M.; Cleij, T.J.; et al. Strategy for Enhancing the Dielectric Constant of Organic Semiconductors without Sacrificing Charge Carrier Mobility and Solubility. Adv. Funct. Mater. 2015, 25, 150–157. [Google Scholar] [CrossRef]
- Alam, S.; Shaheer Akhtar, M.; Abdullah; Eunbi-Kim; Shin, H.S.; Ameen, S. New Energetic Indandione Based Planar Donor for Stable and Efficient Organic Solar Cells. Sol. Energy 2020, 201, 649–657. [Google Scholar] [CrossRef]
- Abdullah; Akhtar, M.S.; Kim, E.B.; Fijahi, L.; Shin, H.S.; Ameen, S. A Symmetric Benzoselenadiazole Based D–A–D Small Molecule for Solution Processed Bulk-Heterojunction Organic Solar Cells. J. Ind. Eng. Chem. 2020, 81, 309–316. [Google Scholar] [CrossRef]
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissö Rtel §, F.; Salbeck, J.; Spreitzer, H.; Grä, M. Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies. Nature 1998, 395, 583–585. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Matsushima, T.; Adachi, C. Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy Fuels 2021, 35, 18915–18927. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, W.; Shaker, A.; Abouelatta, M.; Zekry, A. Possible Efficiency Boosting of Non-Fullerene Acceptor Solar Cell Using Device Simulation. Opt. Mater. 2019, 91, 239–245. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Samad, A.; Iqbal, M.A.; Mushtaq, T.; Hussain, A.; Malik, M.; Haider, S.; Pham, P.V.; Choi, J.R. Performance Analysis and Optimization of a PBDB-T:ITIC Based Organic Solar Cell Using Graphene Oxide as the Hole Transport Layer. Nanomaterials 2022, 12, 1767. [Google Scholar] [CrossRef]
- Rafique, S.; Roslan, N.A.; Abdullah, S.M.; Li, L.; Supangat, A.; Jilani, A.; Iwamoto, M. UV- Ozone Treated Graphene Oxide/PEDOT:PSS Bilayer as a Novel Hole Transport Layer in Highly Efficient and Stable Organic Solar Cells. Org. Electron. 2019, 66, 32–42. [Google Scholar] [CrossRef]
- Widianto, E.; Shobih; Rosa, E.S.; Triyana, K.; Nursam, N.M.; Santoso, I. Performance Analysis of Carbon-Based Perovskite Solar Cells by Graphene Oxide as Hole Transport Layer: Experimental and Numerical Simulation. Opt. Mater. 2021, 121, 111584. [Google Scholar] [CrossRef]
- Bendenia, C.; Merad-Dib, H.; Bendenia, S.; Bessaha, G.; Hadri, B. Theoretical Study of the Impact of the D/A System Polymer and Anodic Interfacial Layer on Inverted Organic Solar Cells (BHJ) Performance. Opt. Mater. 2021, 121, 111588. [Google Scholar] [CrossRef]
- Nithya, K.S.; Sudheer, K.S. Device Modelling of Non-Fullerene Organic Solar Cell with Inorganic CuI Hole Transport Layer Using SCAPS 1-D. Optik 2020, 217, 164790. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Film. 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Jan, S.T.; Noman, M. Influence of Absorption, Energy Band Alignment, Electric Field, Recombination, Layer Thickness, Doping Concentration, Temperature, Reflection and Defect Densities on MAGeI3 Perovskite Solar Cells with Kesterite HTLs. Phys. Scr. 2022, 97, 125007. [Google Scholar] [CrossRef]
- Ahmad, W.; Noman, M.; Tariq Jan, S.; Khan, A.D. Performance Analysis and Optimization of Inverted Inorganic CsGeI 3 Perovskite Cells with Carbon/Copper Charge Transport Materials Using SCAPS-1D. R. Soc. Open. Sci. 2023, 10, 221127. [Google Scholar] [CrossRef] [PubMed]
- Nithya, K.S.; Sudheer, K.S. Device Modelling and Optimization Studies on Novel ITIC-OE Based Non-Fullerene Organic Solar Cell with Diverse Hole and Electron Transport Layers. Opt. Mater. 2022, 123, 111912. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Salah, M.M. Device Modeling of Efficient PBDB-T:PZT-Based All-Polymer Solar Cell: Role of Band Alignment. Polymers 2023, 15, 869. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, W.; Zekry, A.; Shaker, A.; Abouelatta, M. Numerical Study of Organic Graded Bulk Heterojunction Solar Cell Using SCAPS Simulation. Sol. Energy 2020, 211, 375–382. [Google Scholar] [CrossRef]
- Ismail, M.; Noman, M.; Tariq Jan, S.; Imran, M. Boosting Efficiency of Eco-Friendly Perovskite Solar Cell through Optimization of Novel Charge Transport Layers. R. Soc. Open. Sci. 2023, 10, 230331. [Google Scholar] [CrossRef]
- Gan, Y.; Qiu, G.; Qin, B.; Bi, X.; Liu, Y.; Nie, G.; Ning, W.; Yang, R. Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer. Nanomaterials 2023, 13, 1313. [Google Scholar] [CrossRef]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef]
- Haider, S.Z.; Anwar, H.; Wang, M. A Comprehensive Device Modelling of Perovskite Solar Cell with Inorganic Copper Iodide as Hole Transport Material. Semicond. Sci. Technol. 2018, 33, 035001. [Google Scholar] [CrossRef]
- Afrasiab; Khan, A.D.; Subhan, F.E.; Khan, A.D.; Khan, S.D.; Ahmad, M.S.; Rehan, M.S.; Noman, M. Optimization of Efficient Monolithic Perovskite/Silicon Tandem Solar Cell. Optik 2020, 208, 164573. [Google Scholar] [CrossRef]
- Tariq Jan, S.; Noman, M. Influence of Layer Thickness, Defect Density, Doping Concentration, Interface Defects, Work Function, Working Temperature and Reflecting Coating on Lead-Free Perovskite Solar Cell. Sol. Energy 2022, 237, 29–43. [Google Scholar] [CrossRef]
Parameters | Active Layer [18,34] | HTL [35] | ETL [36] |
---|---|---|---|
Thickness, d (nm) | 80 | 50 | 50 |
Electron affinity, χ (eV) | 4.03 | 2.2 | 4.110 |
Energy band gap, Eg (eV) | 1.2 | 2.9 | 2.98 |
Dielectric permittivity, ε | 6.1 | 3 | 5 |
Valence band effective density of states, NV (cm−3) | 1 × 1019 | 1 × 1019 | 1 × 1019 |
Conduction band effective density of states, NC (cm−3) | 1 × 1019 | 1 × 1019 | 1 × 1019 |
Electron thermal velocity, Vthe (cm/s), | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity, Vthp (cm/s), | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility, μn (cm2/Vs) | 1.2 × 10−5 | 1 × 10−4 | 2 × 10−6 |
Hole mobility, μp (cm2/Vs) | 3.5 × 10−4 | 2 × 10−4 | 1 × 10−3 |
Donor density, ND (1/cm3) | - | - | 2 × 1021 |
Acceptor density, NA (1/cm3) | - | 2.8 × 1019 | - |
Defect density, Nt (1/cm3) | 1 × 1014 | 1 × 1014 | 1 × 1014 |
Parameters | Values [26] |
---|---|
Thermionic emission velocity for electron | 1 × 105 cm/s |
Thermionic emission velocity for hole | 1 × 107 cm/s |
Back electrode work function, Ni | 5.01 eV |
Parameters | Values [26,32] |
---|---|
Thermionic emission velocity for electron | 1 × 107 cm/s |
Thermionic emission velocity for hole | 1 × 105 cm/s |
Front electrode work function, (FTO) | 4.4 eV |
Structure | Voc (V) | Jsc (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|
Before | 0.927 | 14.763 | 49.98 | 6.84 |
After | 0.939 | 21.654 | 46.2 | 9.40 |
CTL | CBO | VBO |
---|---|---|
Spiro OMeTAD (HTL) | 1.83 | −0.13 |
PDINO (ETL) | −0.08 | 1.86 |
Parameters | Experimental [18] | Simulated |
---|---|---|
Voc | 0.85 | 0.939 |
Jsc | 14.8 | 21.654 |
FF | 67.0 | 46.2 |
PCE | 8.5 | 9.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.R.; Jarząbek, B. Optimization and Efficiency Enhancement of Modified Polymer Solar Cells. Polymers 2023, 15, 3674. https://doi.org/10.3390/polym15183674
Khan MR, Jarząbek B. Optimization and Efficiency Enhancement of Modified Polymer Solar Cells. Polymers. 2023; 15(18):3674. https://doi.org/10.3390/polym15183674
Chicago/Turabian StyleKhan, Muhammad Raheel, and Bożena Jarząbek. 2023. "Optimization and Efficiency Enhancement of Modified Polymer Solar Cells" Polymers 15, no. 18: 3674. https://doi.org/10.3390/polym15183674
APA StyleKhan, M. R., & Jarząbek, B. (2023). Optimization and Efficiency Enhancement of Modified Polymer Solar Cells. Polymers, 15(18), 3674. https://doi.org/10.3390/polym15183674