Preparation and Characterization of Activated Carbon/Polymer Composites: A Review
Abstract
:1. Introduction
2. Adsorption Properties of Activated Carbon/Polymer Composites
3. Mechanical Properties of Activated Carbon/Polymer Composites
4. Electrical and EMI Shielding Properties of Activated Carbon/Polymer Composites
5. Other Properties of Activated Carbon/Polymer Composites
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chingombe, P.; Saha, B.; Wakeman, R.J. Surface modification and characterisation of a coal-based activated carbon. Carbon 2005, 43, 3132–3143. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Y.; Zhou, J.; Zhang, K.; Chen, S. Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon. Fuel 2008, 87, 1844–1848. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Foster, K.L.; Fuerman, R.G.; Economy, J.; Larson, S.M.; Rood, M.J. Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem. Mater. 1992, 4, 1068–1073. [Google Scholar] [CrossRef]
- Maciá-Agulló, J.A.; Moore, B.C.; Cazorla-Amorós, D.; Linares-Solano, A. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004, 42, 1367–1370. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.J.; He, P.Y.; Li, C.J.; Liu, L.C. Facile synthesis of cost-effective iron enhanced hetero-structure activated carbon/geopolymer composite catalyst for NH3-SCR: Insight into the role of iron species. Appl. Catal. A Gen. 2020, 605, 117804. [Google Scholar] [CrossRef]
- Mines, P.D.; Uthuppu, B.; Thirion, D.; Jakobsen, M.H.; Yavuz, C.T.; Andersen, H.R.; Hwang, Y. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal. Chem. Eng. J. 2018, 339, 22–31. [Google Scholar] [CrossRef]
- Supriya, S.; Palanisamy, P.N. Adsorptive removal of acid orange 7 from industrial effluents using activated carbon and conducting polymer composite–A comparative study. Indian J. Chem. Technol. 2016, 23, 506–512. [Google Scholar]
- Oladipo, A.A.; Gazi, M. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper (II) ions and direct red 80 dye: A multi-component adsorption system. J. Taiwan Inst. Chem. Eng. 2015, 47, 125–136. [Google Scholar] [CrossRef]
- El-Bindary, A.A.; Diab, M.A.; Hussien, M.A.; El-Sonbati, A.Z.; Eessa, A.M. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 124, 70–77. [Google Scholar] [CrossRef]
- Li, S.; Huang, H.; Tao, M.; Liu, X.; Cheng, T. Frontal polymerization preparation of poly (acrylamide-co-acrylic acid)/activated carbon composite hydrogels for dye removal. J. Appl. Polym. Sci. 2013, 129, 3737–3745. [Google Scholar] [CrossRef]
- Baseri, J.R.; Palanisamy, P.N.; Sivakumar, P. Comparative studies of the adsorption of direct dye on activated carbon and conducting polymer composite. J. Chem. 2013, 9, 1122–1134. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, K.D. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon 2001, 39, 1741–1746. [Google Scholar] [CrossRef]
- Yellappa, M.; Modestra, J.A.; Reddy, Y.R.; Mohan, S.V. Functionalized conductive activated carbon-polyaniline composite anode for augmented energy recovery in microbial fuel cells. Bioresour. Technol. 2021, 320, 124340. [Google Scholar] [CrossRef] [PubMed]
- Chonat, A.; Palatty, S. Enhanced Electrochemical Performance of a Hybrid Supercapacitive Material Based on Ternary Doped Polyaniline/Activated Carbon Composite. Energy Fuels 2020, 34, 10148–10159. [Google Scholar] [CrossRef]
- Matsushima, J.T.; Rodrigues, A.C.; Marcuzzo, J.S.; Cuna, A.; Baldan, M.R. 3D-interconnected framework binary composite based on polypyrrole/textile polyacrylonitrile-derived activated carbon fiber felt as supercapacitor electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 10225–10233. [Google Scholar] [CrossRef]
- Lebedeva, M.V.; Ayupov, A.B.; Yeletsky, P.M.; Parmon, V.N. Rice husk derived activated carbon/polyaniline composites as active materials for supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 3674–3690. [Google Scholar] [CrossRef]
- Du, W.; Wang, X.; Sun, X.; Zhan, J.; Zhang, H.; Zhao, X. Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. J. Electroanal. Chem. 2018, 827, 213–220. [Google Scholar] [CrossRef]
- Selvakumar, M. Multilayered electrode materials based on polyaniline/activated carbon composites for supercapacitor applications. Int. J. Hydrog. Energy 2018, 43, 4067–4080. [Google Scholar]
- Ling, J.; Zou, H.; Yang, W.; Chen, W.; Lei, K.; Chen, S. Facile fabrication of polyaniline/molybdenum trioxide/activated carbon cloth composite for supercapacitors. J. Energy Storage 2018, 20, 92–100. [Google Scholar] [CrossRef]
- Vighnesha, K.M.; Sangeetha, D.N.; Selvakumar, M. Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2018, 29, 914–921. [Google Scholar] [CrossRef]
- Põldsalu, I.; Harjo, M.; Tamm, T.; Uibu, M.; Peikolainen, A.L.; Kiefer, R. Inkjet-printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sens. Actuators B Chem. 2017, 250, 44–51. [Google Scholar] [CrossRef]
- Alluri, N.R.; Chandrasekhar, A.; Jeong, J.H.; Kim, S.J. Enhanced electroactive β-phase of the sonication-process-derived PVDF-activated carbon composite film for efficient energy conversion and a battery-free acceleration sensor. J. Mater. Chem. C 2017, 5, 4833–4844. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Wang, Y.; Wang, C.; Xia, Y. Aqueous lithium-ion batteries using polyimide-activated carbon composites anode and spinel LiMn2O4 cathode. ACS Sustain. Chem. Eng. 2017, 5, 1503–1508. [Google Scholar] [CrossRef]
- Na, R.; Zhang, X.; Huo, P.; Du, Y.; Huo, G.; Zhu, K.; Wang, G. High performance disulfonated poly (arylene ether sulfone)/poly (ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes. High Perform. Polym. 2017, 29, 984–993. [Google Scholar] [CrossRef]
- Mohan, V.M.; Murakami, K.; Kono, A.; Shimomura, M. Poly (acrylonitrile)/activated carbon composite polymer gel electrolyte for high efficiency dye sensitized solar cells. J. Mater. Chem. A 2013, 1, 7399–7407. [Google Scholar] [CrossRef]
- Patil, D.S.; Pawar, S.A.; Devan, R.S.; Ma, Y.R.; Bae, W.R.; Kim, J.H.; Patil, P.S. Improved electrochemical performance of activated carbon/polyaniline composite electrode. Mater. Lett. 2014, 117, 248–251. [Google Scholar] [CrossRef]
- Bello, A.; Barzegar, F.; Momodu, D.; Dangbegnon, J.; Taghizadeh, F.; Fabiane, M.; Manyala, N. Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J. Power Sources 2015, 273, 305–311. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Wang, A.; Xu, J.; Wu, S.; Shen, J. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3776–3783. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Forintos, N.; Czigany, T. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers–A short review. Compos. Part B Eng. 2019, 162, 331–343. [Google Scholar] [CrossRef]
- Hu, J.; Mubarak, S.; Li, K.; Huang, X.; Huang, W.; Zhuo, D.; Wang, J. The Micro–Macro Interlaminar Properties of Continuous Carbon Fiber-Reinforced Polyphenylene Sulfide Laminates Made by Thermocompression to Simulate the Consolidation Process in FDM. Polymers 2022, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Motaghi, A.; Hrymak, A.; Motlagh, G.H. Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 2015, 41744. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Omidifar, N.; Bahrani, S.; Vijayakameswara Rao, N.; Chiang, W.H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers 2022, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Allahkarami, E.; Dehghan Monfared, A.; Silva, L.F.O.; Dotto, G.L. Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci. Rep. 2023, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cruz, I.; Ramírez-Herrera, C.A.; Martínez-Romero, O.; Castillo-Márquez, S.A.; Jiménez-Cedeño, I.H.; Olvera-Trejo, D.; Elías-Zúñiga, A. Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites. Polymers 2022, 14, 1100. [Google Scholar] [CrossRef] [PubMed]
- Araby, S.; Philips, B.; Meng, Q.; Ma, J.; Laoui, T.; Wang, C.H. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B Eng. 2021, 212, 108675. [Google Scholar] [CrossRef]
- Badakhsh, A.; Lee, Y.M.; Rhee, K.Y.; Park, C.W.; An, K.H.; Kim, B.J. Improvement of thermal, electrical and mechanical properties of composites using a synergistic network of length controlled-CNTs and graphene nanoplatelets. Compos. Part B Eng. 2019, 175, 107075. [Google Scholar] [CrossRef]
- Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent progress in graphene/polymer nanocomposites. Adv. Mater. 2021, 33, 2001105. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Noroozi, M.; Abrisham, M.; Eghbalinia, S.; Teimoury, F.; Bahramian, A.R.; Goodarzi, V. A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl. Electron. Mater. 2020, 2, 2318–2350. [Google Scholar] [CrossRef]
- Cheng, X.; Yokozeki, T.; Wu, L.; Koyanagi, J.; Wang, H.; Sun, Q. The enhancement effect of carbon-based nano-fillers/polyaniline hybrids on the through-thickness electric conductivity of carbon fiber reinforced polymer. Compos. Part A Appl. Sci. Manuf. 2015, 105, 281–290. [Google Scholar] [CrossRef]
- Brigandi, P.J.; Cogen, J.M.; Pearson, R.A. Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 2014, 54, 1–16. [Google Scholar] [CrossRef]
- Babu, K.; Rendén, G.; Afriyie Mensah, R.; Kim, N.K.; Jiang, L.; Xu, Q.; Das, O. A review on the flammability properties of carbon-based polymeric composites: State-of-the-art and future trends. Polymers 2020, 12, 1518. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 2021, 177, 304–331. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Duan, Y. Investigating the Effect of Low-Temperature Drilling Process on the Mechanical Behavior of CFRP. Polymers 2022, 14, 1034. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.M.; Ni, W.L. Effect of Dispersing Multiwalled Carbon Nanotubes and Graphene Nanoplatelets Hybrids in the Matrix on the Flexural Fatigue Properties of Carbon/Epoxy Composites. Polymers 2022, 14, 918. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Park, J.E.; Kim, Y.K. Evaluation of (CNT@ CIP)-embedded magneto-resistive sensor based on carbon nanotube and carbonyl iron powder polymer composites. Polymers 2022, 14, 542. [Google Scholar] [CrossRef]
- Cravanzola, S.; Haznedar, G.; Scarano, D.; Zecchina, A.; Cesano, F. Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon 2013, 62, 270–277. [Google Scholar] [CrossRef]
- Park, D.W.; Shim, S.E. A review on thermal conductivity of polymer composites using carbon-based fillers: Carbon nanotubes and carbon fibers. Carbon Lett. 2010, 11, 347–356. [Google Scholar]
- Jeong, J.S.; Kim, K.W.; An, K.H.; Kim, B.J. Fast recovery process of carbon fibers from waste carbon fibers-reinforced thermoset plastics. J. Environ. Manag. 2019, 247, 816–821. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Zhu, Z.; Xu, E.; Li, S.; Sui, S. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures. Compos. Sci. Technol. 2022, 218, 109200. [Google Scholar] [CrossRef]
- Yim, Y.J.; Lee, J.J.; Tugirumubano, A.; Go, S.H.; Kim, H.G.; Kwac, L.K. Electromagnetic interference shielding behavior of magnetic carbon fibers prepared by electroless FeCoNi-plating. Materials 2021, 14, 3774. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Choi, B.H.; Yoon, H.N.; Yang, B.; Lee, H.K. Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites. Compos. Struct. 2022, 286, 115326. [Google Scholar] [CrossRef]
- Yim, Y.J.; Rhee, K.Y.; Park, S.J. Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites. Compos. Part B Eng. 2015, 76, 286–291. [Google Scholar] [CrossRef]
- Feng, C.; Jiang, L. Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 47, 143–149. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Yim, Y.J.; Rhee, K.Y.; Park, S.J. Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos. Part B Eng. 2016, 98, 120–125. [Google Scholar] [CrossRef]
- Sun, X.; Sun, H.; Li, H.; Peng, H. Developing polymer composite materials: Carbon nanotubes or graphene. Adv. Mater. 2013, 25, 5153–5176. [Google Scholar] [CrossRef]
- Yim, Y.J.; Chung, D.C.; Park, S.J. EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites. Carbon Lett. 2017, 22, 36–41. [Google Scholar]
- Esawi, A.M.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S.J.C.S. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 2010, 70, 2237–2241. [Google Scholar] [CrossRef]
- Ma, P.C.; Tang, B.Z.; Kim, J.K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46, 1497–1505. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef]
- Kim, S.; Ku, S.H.; Lim, S.Y.; Kim, J.H.; Park, C.B. Graphene–biomineral hybrid materials. Adv. Mater. 2011, 23, 2009–2014. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Choi, Y.H.; Rhee, K.Y.; Yang, K.S.; Kim, B.J. Facile preparation and characterization of carbon fibers with core-shell structure from graphene-dispersed isotropic pitch compounds. Nanomaterials 2019, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Yim, Y.J.; Park, S.J. Influence of MWCNTs on Fracture Toughness of MWCNTs/Nickel-Pitch Fiber/Epoxy Composites. Compos. Res. 2015, 28, 361–365. [Google Scholar] [CrossRef]
- Akter, M.; Hirase, N.; Sikder, M.; Rahman, M.; Hosokawa, T.; Saito, T.; Kurasaki, M. Pb (II) Remediation from Aqueous Environment Using Chitosan-Activated Carbon-Polyvinyl Alcohol Composite Beads. Water Air Soil Pollut. 2021, 232, 272. [Google Scholar] [CrossRef]
- Bekhoukh, A.; Moulefera, I.; Zeggai, F.Z.; Benyoucef, A.; Bachari, K. Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: Synthesis, characterization, adsorption behavior, regeneration and kinetics study. J. Polym. Environ. 2022, 30, 886–895. [Google Scholar] [CrossRef]
- Ramadoss, P.; Regi, T.; Rahman, M.I.; Arivuoli, D. Low-cost and biodegradable cellulose/PVP/activated carbon composite membrane for brackish water treatment. J. Appl. Polym. Sci. 2020, 137, 48746. [Google Scholar] [CrossRef]
- Nawi, M.A.; Sabar, S.; Nawawi, W.I. Preparation of immobilized activated carbon-polyvinyl alcohol composite for the adsorptive removal of 2, 4-dichlorophenoxyacetic acid. J. Water Process. Eng. 2018, 25, 269–277. [Google Scholar]
- Aswini, K.; Jaisankar, V. A Study on the Environmental Applications of Activated Carbon and Its Polymer Composite from Agro Waste Materials. Int. J. Res. Advent Technol. 2018, 6, 3557–3566. [Google Scholar]
- Khalili, S.; Khoshandam, B.; Jahanshahi, M. Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Adv. 2016, 6, 35692–35704. [Google Scholar] [CrossRef]
- Hwang, L.L.; Chen, J.C.; Wey, M.Y. The properties and filtration efficiency of activated carbon polymer composite membranes for the removal of humic acid. Desalination 2013, 313, 166–175. [Google Scholar] [CrossRef]
- Li, W.; Liu, S. Preparation and characterization of polyurethane foam/activated carbon composite adsorbents. J. Porous Mater. 2021, 19, 567–572. [Google Scholar] [CrossRef]
- Wang, R.; Meng, T.; Zhang, B.; Chen, C.; Li, D. Preparation and characterization of activated carbon/ultra-high molecular weight polyethylene composites. Polym. Compos. 2021, 42, 2728–2736. [Google Scholar] [CrossRef]
- Thue, T.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.P.; Vaghetti, J.C.P.; Rodembusch, F.S.; Pavan, F.A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J. Colloid Interface Sci. 2016, 486, 163–175. [Google Scholar] [CrossRef]
- Nisar, M.; Thue, P.S.; Maghous, M.B.; Geshev, J.; Lima, E.C.; Einloft, S. Metal activated carbon as an efficient filler for high-density polyethylene nanocomposites. Polym. Compos. 2020, 41, 3184–3193. [Google Scholar] [CrossRef]
- Prakash, M.O.; Gujjala, R.; Panchal, M.; Ojha, S. Mechanical characterization of arhar biomass based porous nano activated carbon polymer composites. Polym. Compos. 2020, 41, 3113–3123. [Google Scholar] [CrossRef]
- Lay, M.; Rusli, A.; Abdullah, M.K.; Hamid, Z.A.A.; Shuib, R.K. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites. Compos. Part B 2020, 201, 108366. [Google Scholar] [CrossRef]
- Hunain, M.B.; Alnomani, S.N.; Razzaq, Q. An Investigation of Tensile and Thermal Properties of Epoxy Polymer Modified by Activated Carbon Particle. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012164. [Google Scholar] [CrossRef]
- Mostafa, N.H.; Hunain, M.B.; Jassim, A. Mechanical properties of the Jute fibers-activated carbon filled reinforced polyester composites. Mater. Res. Express 2019, 12, 125104. [Google Scholar] [CrossRef]
- Mahmud, D.N.F.; Abdollah, M.F.B.; Masripan, N.A.B.; Tamaldin, N.; Amiruddin, H. Influence of contact pressure and sliding speed dependence on the tribological characteristics of an activated carbon-epoxy composite derived from palm kernel under dry sliding conditions. Friction 2018, 7, 227–236. [Google Scholar] [CrossRef]
- Chua, K.W.; Bin Abdollah, M.F.; Tahir, N.A.M.; Amiruddin, H. Frictional properties of palm kernel activated carbon-epoxy composites under various normal loads. J. Teknol. 2015, 76, 1–4. [Google Scholar]
- Wang, Q.; Su, D.S. Reinforcing epoxy resin with activated carbon: A way of high rate of quality and price. Compos. Commun. 2018, 9, 54–57. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Jawaid, M.; Firoozian, P.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S. Flexural properties of activated carbon filled epoxy nanocomposites. Malays. J. Anal. Sci. 2014, 18, 391–397. [Google Scholar]
- Song, S.A.; Oh, H.J.; Kim, B.G.; Kim, S.S. Novel foaming methods to fabricate activated carbon reinforced microcellular phenolic foams. Compos. Sci. Technol. 2013, 76, 45–51. [Google Scholar] [CrossRef]
- Singsang, W.; Suetrong, J.; Choedsanthia, T.; Srakaew, N.L.O.; Jantrasee, S.; Prasoetsopha, N. Properties of biodegradable poly (butylene succinate) filled with activated carbon synthesized from waste coffee grounds. J. Mater. Sci. Appl. Energy 2021, 10, 87–95. [Google Scholar]
- Abdullah, B.; Ilyas, S.; Tahir, D. Nanocomposites Fe/activated carbon/PVA for microwave absorber: Synthesis and characterization. J. Nanomater. 2018, 2018, 9823263. [Google Scholar] [CrossRef]
- Naeem, S.; Baheti, V.; Militky, J.; Ali, A. Multifunctional polylactic acid composites filled with activated carbon particles obtained from acrylic fibrous wastes. Polym. Compos. 2019, 40, 578–590. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, S.; Ren, H.; Shi, S.Q.; Zhang, H.; Cai, L.; Li, J. Scalable fabrication of natural-fiber reinforced composites with electromagnetic interference shielding properties by incorporating powdered activated carbon. Materials 2015, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, A.; Se, S.M.; Ibrahim, I.M.; Ahsan, Q. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Mater. 2015, 30, 167–175. [Google Scholar] [CrossRef]
- Arora, M.; Puri, C.; Wahab, M.A.; Saini, P. Synthesis and characterization of acrylic resin/activated carbon composites. Indian J. Pure Appl. Phys. 2014, 52, 251–254. [Google Scholar]
- Wu, J.; Chung, D.D.L. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 2002, 40, 445–447. [Google Scholar] [CrossRef]
- Arora, M.; Wahab, M.A.; Saini, P. Permittivity and electromagnetic interference shielding investigations of activated charcoal loaded acrylic coating compositions. J. Polym. 2014, 2014, 193058. [Google Scholar]
- Yew, B.S.; Muhamad, M.; Mohamed, S.B.; Wee, F.H. Coconut shell, coconut shell activated carbon and beta-silicon carbide reinforced polymer composite: An alternative dielectric material for wireless communication application. Bull. Electr. Eng. Inform. 2020, 9, 311–318. [Google Scholar] [CrossRef]
- Yun, J.M.; Im, J.S.; Oh, A.R.; Lee, Y.S.; Kim, H.I. Controlled release behavior of ph-responsive composite hydrogel containing activated carbon. Carbon Lett. 2009, 10, 33–37. [Google Scholar] [CrossRef]
- Gong, J.; Tian, N.; Liu, J.; Yao, K.; Jiang, Z.; Chen, X.; Tang, T. Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 2014, 99, 18–26. [Google Scholar] [CrossRef]
- Alston, S.; Arnold, C.; Swan, M.; Stone, C. A source-sink model for water diffusion in an activated carbon fiber/phenolic composite. Polym. Compos. 2021, 42, 3550–3561. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, W.; He, S.; Wang, X.; Jiao, Y.; Qu, H.; Xu, J. Synergistic flame retardant effects of activated carbon and molybdenum oxide in poly (vinyl chloride). Polym. Int. 2018, 67, 445–452. [Google Scholar] [CrossRef]
- Oh, A.; Yun, J.; Kim, H.I. Controlled release behavior of PCL/PEO/activated carbon composite microcapsule. J. Polym. Res. 2011, 18, 2441–2447. [Google Scholar] [CrossRef]
Preparation Condition | Adsorption Characteristics | Enhancement |
---|---|---|
Chitosan (3 g)-AC (1 g)/PVA (4 g) composites by mixing and heating [69] | Adsorbed amount of Pb (0.2801 mg/g) | Adsorbed amount of Pb: 115.95% (compared with CS) |
AC/PANI composites via in situ polymerization [70] | MO removal capacity (192.52 mg g−1 at 298 K and pH 6.0) | 311.19% (compared with PANI) |
AC/NaCMC/PVP (1:3:2) composites using the solution casting method [71] | Adsorption of two toxic dyes, Rhodamine B (57%) and methyl orange (100%) | - |
AC/polyvinyl alcohol composites using the solution method [72] | Adsorption of 2,4-dichlorophenoxyacetic acid (55.9 mg/g) | - |
Sugarcane bagasse–AC/PVP composites [73] | Adsorption capacity of Pb (96.39%), Cu (98.38%), and Cd (79.43%) | 4.63%, 3.15%, and 2.75% (compared with AC) |
AC/polyaniline composites via in situ polymerization [74] | CO2 adsorption capacity (3.16 mmol/g) | 65.44% (compared with AC) |
AC/PPSU/PEI/PEG (0.25/35/5/6 wt.%) composites using the wet phase inversion technique [75] | Humic acid removal efficiency (80%) | - |
AC/polyurethane foam (PU) composites [76] | Adsorption capacity of MB (100 mg/g) | - |
Preparation Condition | Mechanical Characteristics | Enhancement |
---|---|---|
BAC (65%)/UHMWPE (35%) composites using the twin-screw extrusion process [77] | Tensile strength (97.65 ± 5.23 MPa) | Tensile strength: 325.86% (compared with UHMWPE) |
AC–Ni/PE composites (2 wt.%) composites using the melt mixing technique [78,79] | Tensile modulus (1202 MPa) | Tensile modulus: 53.51% (compared with HDPE) |
AC (2%)/epoxy composites using mechanical stirring methods [80] | Tensile and flexural strengths (56 and 95.2 MPa, respectively) | Tensile strength: 329% Flexural strength: 226% (compared with epoxy) |
Dead leaf-AC (15 PHR)/rubber (SMR) composites using the mixing and compounding process [81] | Tensile strength and modulus elongation | - |
AC (15 wt.%)/epoxy composites using a laboratory shear mixture [82] | Tensile strength (26.34 MPa) | Tensile strength: 19.16% |
AC (3%)/jute fiber (21%)/polyester composites using the hand lay-up process [83] | Impact strength (6.4 kJ/m2) | Impact strength: 51% |
AC (60%)/epoxy (40%) composites using a hot-press machine [84] | Coefficient of friction and wear | - |
PKAC (70 mass%)/epoxy (30 mass%) composites using a hot-press machine [85] | Friction coefficient | - |
0.3% NAC (ammonia-treated)/epoxy composites using mill technology [86] | Fracture toughness (KIC: 3.88 ± 0.06 MPa m1/2) | KIC: 234.48% |
AC (5%)/epoxy composites by mixing [87] | Fracture toughness (0.92 J) | Fracture toughness: 17.94% |
phenolic resin (90)/acid (10)/AC (1) composite foams by microwave foaming [88] | Compressive strength (2170 kPa) | Compressive strength: 9.7% |
Preparation Condition | Electrical and EMI Shielding Properties | Enhancement |
---|---|---|
Coffee-AC (5 wt.%)/PBS composites using the melting process [89] | Electrical conductivity (4.32 × 10−5 (Ω·m)−1) | 229.77% (compared with PBS) |
Fe-AC (20%)/PVA composites using the solution method [90] | Microwave absorption (−32.5 dB) | - |
Acrylic fibrous waste–AC (10 wt.%)/PLA composites via solvent casting [91] | EMI shielding properties (16 dB) and electrical conductivity (10,000 Ω·cm) | EMI shielding properties: 220% (compared with AC 1 wt.%) Electrical conductivity: 5 × 1015 Ω·cm (Pure PLA) |
AC (28.9%)/polyester composites using the VARTM process [92] | EMI shielding properties (93%) | 124.63% (compared with AC 0%) |
AC (8 wt.%)/PU composites using the chemical blowing method [93] | Microwave absorption (10 dB) | - |
AC (30 wt.%)/acrylic resin(AR) composites using the solution process [94] | Electrical resistivity (104 Ω/sq) | Pure AR (1011 Ω/sq) |
ACF/epoxy composites using filament winding machine [95] | EMI shielding properties (38 dB) | 31% (compared with CF/epoxy) |
AC (30 wt.%)/acrylic resin(AR) composites using the solution process [96] | EMI shielding effectiveness (−36 dB) | 1400% (compared with AR) |
Coconut shells(CS)/CS-AC/beta-silicon carbide (β-SiC)/epoxy resin composites using the solution process [97] | Dielectric properties and Electrical conductivity | - |
Preparation Condition | Other Properties | Enhancement |
---|---|---|
AC/PVA/PAAc composite hydrogel by free-radical polymerization [98] | Drug release behavior | - |
AC/Ni2O3/polypropylene composites using the melt mixing process [99] | Thermal stability and flame retardancy | - |
ACFs/phenolic resin composites composites via solvent casting [100] | Hygroscopic behavior | - |
AC/MoO3/PVC composites using the solution process [101] | Heat release rate (173.80 kW/m2) and smoke generation rate (0.1472 m2/s) | 47.3% and 59.9% reduction (compared with PVC) |
AC/PCL/PEO composites using the oil-in-water emulsion solvent evaporation method [102] | Drug release behavior | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, Y.-J.; Kim, B.-J. Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers 2023, 15, 3472. https://doi.org/10.3390/polym15163472
Yim Y-J, Kim B-J. Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers. 2023; 15(16):3472. https://doi.org/10.3390/polym15163472
Chicago/Turabian StyleYim, Yoon-Ji, and Byung-Joo Kim. 2023. "Preparation and Characterization of Activated Carbon/Polymer Composites: A Review" Polymers 15, no. 16: 3472. https://doi.org/10.3390/polym15163472
APA StyleYim, Y. -J., & Kim, B. -J. (2023). Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers, 15(16), 3472. https://doi.org/10.3390/polym15163472