Hyaluronic Acid—Extraction Methods, Sources and Applications
Abstract
:1. Introduction
2. Sources of Hyaluronic Acid and Methods of Extraction
2.1. Structure and Production of Hyaluronic Acid
2.2. Rheological Properties
2.3. Commercial Production Systems of HA
2.3.1. Production of HA from Animals
2.3.2. Production of HA from Microorganisms
2.3.3. Cell-Free Methods of HA Production
2.4. Methods of Extraction of Hyaluronic Acid
Source | Method | Conditions Used | Concentration | Reference |
---|---|---|---|---|
Tuna (Eyeballs) | Chemical extraction | -Treated: 3% CPC/15 min at 4 °C. -Precipitation: 0.4 M NaCl to dissociate the HA-CPC. -Centrifuged: 2.22 × 103 g/15 min at 4 °C. Resuspended: 0.1 M Tris–HCl (pH 7.7) with mycolysin 24 h/37 °C. -Dialysis (for 2 days, distiller water) | 0.42 g/L vitreous humor | [34] |
Swordfish (Vitreous humor) | Chemical extraction | Alkaline process: NaOH concentration 0.45, 0.85 M. Ultrafiltration-diafiltration: plate polysulfone membranes cut-off at 35 °C. Protein electrodeposition: 2 platinum electrodes of 50 cm length and prepared in spiral/cylindric at 10–40 mA. | 0.055 g/L HA | [35] |
Shark (vitreous humor) | Chemical extraction | -Alkaline process: NaOH concentration 0.45, 0.85 M. -Ultrafiltration-diafiltration: plate polysulfone membranes cut-off at 35 °C. -Protein electrodeposition: 2 platinum electrodes of 50 cm length and prepared in spiral/cylindric at 10–40 mA. | 0.3 g/L HA | [35] |
Stingray (Liver) | Chemical- Enzymatic extraction | -Defatted: acetone and dried at 60 °C/24 h. -Pellet in 100 mM NaOAc buffer pH 5.5 containing 5 mM EDTA, 5 mM cysteine. -Digestion: papain, incubated for 24 h at 60 °C in a stirrer. Precipitation: centrifuged 5000× g for 15 min and 3 volumes of ethanol saturated with NaOAc. Dried: at 60 °C for 6 h. | 6.1 mg HA/g dry weight of tissue | [36] |
Pig (Sinovial fluid) Sheep (Sinovial fluid) | Chemical Enzymatic extraction | -Extraction chloroform and NaCl -Digestion: Trypsin-Pronase chloroform treatment and filtration at 37 °C. | Less 5 µg of protein per milligram of HA | [39] |
Wattle | Enzymatic extraction | Papain Dialysis and cellulose acetate electrophoresis | 17.9 μg/ mg | [40,52] |
Rooster comb | Chemical Enzymatic extraction | -Defatted: Acetone and dried at 80 °C. -Digestion: twice-crystallized papain in 1 mL of 0.1 M sodium phosphate buffer containing 0.005 M EDTA, 0.005 M cysteine hydrochloride, 0.02% sodium azide having a pH of 6.5. 65 °C for 4 h. -Dialysis: dialysis tubing (molecular mass cutoff, 6000–8000 Da) for 24 h. | 39.8 μg/mg | [40] |
Chicken comb 50:50 male and female | Chemical Enzymatic Extraction | Dehydration: acetone. Extraction/delipidation (chloroform and methanol solution (2:1 v/v) for 24 h at 25 °C). Extraction: Papain digestion buffer (20 mg/mL), ethanol to purification and centrifugation. | Dry material 15 g hexuronic acid/mg dry tissue | [41,45,51] |
Rooster comb | Chemical extraction | -Defatted acetone (3 intervals) each 24 h at 8 °C. -Extraction: NaOAc 5% -Precipitation: sodium saline citrate. | * | [42] |
Rooster comb | Chemical extraction | -Defatted: acetone -Extraction: NaOAc 5% -Precipitation: chloroform–amyl alcohol -Dialysis | 1 mg/g of frozen rooster comb | [43] |
Mollusk- Bivalve | Enzymatic extraction | -Defatted with acetone. -Centrifugation and pellets dried. -Digestion: Buffer (100 mM NaOAc pH 5.5, 5 mM EDTA and cysteine), papain (100 mg/g of tissue). -Samples: 10 mL of 0.05 M NaCl and centrifugation. -Anion exchange: column chromatography (DEAE cellulose). | 4.2 mg/g dry weight of tissue | [46] |
Eggshell- Membrane | Enzymatic extraction | -Hydrolysis: Pepsin, trypsin, and papain at 37 °C/5 h. pH 3 | Papain: 39.02 mg/g Trypsin: 44.83 mg/g Pepsin: 29.70 mg/g | [47] |
Bovine Synovial fluid | Chemical extraction | -Diluted in water and dissolved in CPC. -Precipitation: NaCl and ethanol 40% v/v Fuller’s earth (50 g of original material in 300 mL of phosphate buffer). -Dialysis: distiller water, 12 h at 4 °C. | 250 mg/L | [48,53] |
Eggshell- membrane | Enzymatic extraction | Treated: yeast enzyme complex pH to 7.2; CPC at 1:60 (v/v); centrifugation; ethanol to filtered HA solution 2:1 ratio, centrifugated; dissolved in 0.2 M NaCl in 0.2 M phosphate buffer, pH 7.2; ethanol precipitation, filtration, and acetone wash. | * Hyaluronan dry powder | [49] |
Rooster combs | Enzymatic extraction | Water 100 °C. Papain; ultrafiltration in 40% water-ethanol mixture. | * Lyophilized powder | [50] |
Rooster combs | Chemical extraction | Water extract heating at 90–100 °C; lipid removal; filtration; treatment with activated carbon. | * Lyophilized powder | [50] |
Rooster combs | Chemical extraction | Physiological solution, 80–90 °C, 2 extractions. Filtration: precipitation acetic acid with NaOH to pH 7–7.3, heating to 80–90 °C; repeatable filtration. | * Lyophilized powder free from nucleic acids. | [50] |
Rooster combs | Chemical extraction | 3 extractions: water Precipitation: trichloroacetic acid from the extract volume at 20–22 °C form 1–2 h; lipid and water removal with acetone and ether three times. | * Lyophilized powder | [50] |
Rooster combs | Chemical extraction | 1–15% solution of NaCl at 60 °C, 18 h. Yield 1.92% from the stating material, centrifugation; lyophilization. | Fibre-like white substance; protein content 9–24% | [50] |
Rooster combs | Ultrasound-Chemical extraction | Treated: ethanol and ultrasound (16–20 kHz 20–25 min). Extraction conditions: water at 45–50 °C, 20–25 min 55% of HA. Vacuum filtration: HA 95% precipitation with ethanol at the ratio 1:3, drying. | * Hyaluronan dry powder | [50] |
Rooster combs- umbilical cord | Chemical extraction | Grinded raw material frozen to (−20–70 °C), 2 parts of water by weight added and mixture heated 15–25 min at 95–100 °C. | * Hyaluronan dry powder | [50] |
Rooster combs | Chemical extraction | Treated collagenase 0.03–0.04% to the tissue weight for 45–50 min, 45–50 °C, pH 6.8–7. Precipitation: ethanol at the ratio 1:3; vacuum filtration, vacuum drying or sublimation. | * Hyaluronan dry powder of solution | [50] |
Rooster combs | Enzymatic extraction | Frozen tissue treated with water 55 °C. Proteolysis: 3.5 h at 37 °C. Filtration (5.6 g/1 kg of the tissue). Precipitation: dissolved 30% ethanol with NaCl, reprecipitated (ethanol). | * Hyaluronan dry powder | [50] |
Rooster combs | Enzymatic extraction | Combs boiled: 4 h at 50 °C and pH 7.5 with Pronase. Yield: 6.7 g/1 kg tissue. Filtration: CPC. Precipitant: 30% ethanol and NaCl. | * Hyaluronan dry powder | [50] |
Rooster-chicken combs | Chemical extraction | Water pH 3–4, 90–100 °C, 50 min. Treatment with activated carbon then cellulose; filtration. | * Lyophilized | [50] |
Rooster-chicken combs | Chemical extraction | Extractions: water. Treatment chloroform. Precipitation: ethanol. | * Lyophilized | [50] |
Rooster /chicken combs | Chemical extraction | Wash (ethanol, chloroform). Extraction: 3.5 volumes of water, acidified (pH 3–4 at 90–100 °C, 40–60 min), yield 0.09%. Extracts (filtered), proteins (60–80 °C). Filtration: 40 °C through polyvinylchloride membranes. | * Powder dried | [50] |
Chicken combs | Chemical extraction | Solution of tertbutyl alcohol twice (5–25%). NaCl to creation of two-phase system precipitation (ethanol). | * White amorphous powder | [50] |
Owl monkey (Eyes) | Chemical extraction | Use of organic sodium salt Dialysis | 291.8 μg/mL vitreous humor | [51] |
Chicken comb (Eyes) | Chemical Extraction | Sodium salt, Dialysis | 469.9 μg/ mL vitreous humor | [51] |
Rooster combs | Chemical extraction | Extraction: water. Treatments with mixture chloroform and NaCl 5 °C, 3–5 h; treatment: Pronase. Precipitation: ethanol. | * Lyophilized powder | [52] |
Owl monkey (Eyes) | Chemical extraction | -Use of organic solvents Salts: NaCl 1 M, CPC and ethanol. -Deproteinized: chloroform treatment. | 3.97 g | [52] |
Eggshell- membrane | Chemical extraction | -Extraction: Acetic acid 4 M and isopropanol. -Precipitation: centrifugation at 18,000 rpm, 20 min at 4 °C Washed: NaOAc 3% | 5.3 mg HA/g Eggshell | [53] |
Wattle | Enzymatic extraction | Pronase chloroform treatment and ion exchange chromatography | Yield > 90% with respect to hexuronic acid | [60] |
Rooster comb | Chemical extraction | Organic solvent and NaOAc, chloroform treatment | * | [61] |
3. Applications
3.1. Food Industry
3.2. Oral Supplementation
Product | Source | Functionality | Reference |
---|---|---|---|
Capsules | HA (Habest®) 95% Purity | Trial HA (120 mg) intake for 12 weeks in 40 healthy individuals Asian that consume oral ingestion | [68] |
Capsules | HA (Hyabest®) 95% Purity | Effect of oral intake of HA for 12 weeks with individuals Japanese. | [69] |
Oral preparation | HA, CS, curcumin, and quercetin | Therapy against cystitis in patients receiving intravesical chemotherapy for bladder cancer. | [71] |
Oral administration | CS, GlHCl, HA, native collagen type II | Beneficial joint health effects of basic formula (CS + GlHCl + HA) and basic formula plus native collagen type II which results in even greater efficacy. | [72] |
Dry powder | HA of two Mw (Kewpie Corporation, Tokyo, Japan) | Degradation and absorption of HA in excretion into the feces, intestinal tract, large intestine, and translocation to the blood and skin were examined. | [75] |
3.3. Cosmetic Industry
Product | Source | Functionality | Reference |
---|---|---|---|
Nanoparticles | HA Commercial | Effectively delivered by nanoparticles than passive diffusion and could contribute to barrier recovery following UV irradiation. | [85] |
Microneedles | HA Commercial | Verify the face skin improvement effect and safety of a novel cosmetic microneedle patch. | [86] |
Microneedles | HA Commercial | Effective than the HA essence for wrinkle improvement and safe. | [87] |
Microneedles | HA Commercial | Skin rejuvenation due to its water-retaining ability and viscoelastic nature. | [89] |
Microneedles | Adenosine encapsulated high and low molecular weight HA | It was analyzed the skin improvement and the patch which HMw patch showed the better effect than LMw HA patch with the similar adenosine doses. | [91] |
Dissolving Microneedle array | HA Commercial/ Hydroxypropyl-β-cyclodextrin Triamcinolone acetonide | Alternative treatment to hypertrophic scar was evaluated in a model in rabbits the delivery of administration strategy. | [93,95] |
3.4. Dermic Filler
3.5. Biomaterials, Pharmaceutical and Delivery Systems
Product | Source | Functionality | Reference |
---|---|---|---|
Cryogel Scaffolds | HA Commercial | HA-based in injectable cryogel scaffolds to promote regeneration of cartilage tissue for without surgery invasive defect repair. | [103] |
HA/Cs Multilayered Coatings | HA from Streptococcus equi sp. | Promote cell adhesion into the films to induce tumor cell capture. | [104] |
Composite coating | HA Commercial | Excellent cytocompatibility. | [105] |
Nanoparticles | HA Commercial | As a potential therapeutic agent for OA treatment. | [108] |
Nanoparticles | HA from Streptococcus equi | Effects after gamma irradiation nanoparticles of HA (HA-NPs) that could diminish detrimental radiation-induced processes in lung tissue. | [109] |
Hydrogel | HA Commercial | Mixing LMw and HMw which had stronger in vitro antidegradation ability as suggesting potential in regenerative medicine and tissue engineering. | [110] |
Dressing with Double-Crosslinked HA-Based Hydrogels | HA Mw = 3 × 105 Da | Novel double-crosslinked hydrogel this will be further explored for its application in the treatment of the diabetic foot ulcers. | [111] |
3D Bio-Printing (Hybrid scaffold) | Cs, Gel, and HA | Bio-scaffolds were prepared using 3D printing technology. To support the proliferation and differentiation of mesenchymal stem cells. | [112] |
Light-activated liposomes | HA 8–15 kDa | Coated liposomes for drug release, stability, protein corona formation, and mobility in the vitreous humor as alternative for intravenous and ocular drug delivery. | [113,124] |
Activity HA with Lactobacillus crispatus Lyophilised | HA Commercial Mw 1800–2300 kDa | HA and cell free culture supernatants from L. crispatus BC5 to design a new therapeutic strategy to counteract vulvovaginal candidiasis. | [114] |
Hydrogel (Hymovis®) in the treatment of symptomatic knee OA | HA (Hymovis®, Fidia Farmaceutici S.p.A, Abano Terme, Italy) | Novel HA-based hydrogel (Hymovis®) in individuals suffering from knee OA to reduce pain and improve joint function. | [117] |
Nanocellulose-Based Patches | HA Mw 403.31 kDa > 95% | With Diclofenac towards aphthous stomatitis treatment with a point to a diffusion and swelling-controlled drug-release mechanism. | [118] |
Ionic Polymeric Micelles | LMw 50 kDa | Micelles loaded with a poorly soluble hydrophobic antifungal drug, clotrimazole, envisaging cutaneous or vaginal application. | [119] |
Microneedles | HA Commercial | Transdermal delivery of insulin, the relative pharmacologic availability and relative bioavailability of insulin from microneedle in mice. | [120] |
System of organotypic human skin explants | HA Commercial | Effect on tissues of a mixture of skin–pin interface was also studied. Study in vitro to analyze cellular apoptosis and proliferation. | [121] |
Hydrogel | HA Commercial | Physical mixture of Poloxamer 407, chitosan and HA for the treatment of skin and mucosal wounds with antimicrobial and biological effects proposed as a suitable vehicle against infections on skin and mucosa. | [125] |
Coated | HA Commercial | Coated patch was anti-thrombotic decreased neointimal thickness both in patch venoplasty and angioplasty in a rat model. | [126] |
Scaffold | HA Commercial | Powerful materials platform to better mimic the biophysical and biochemical microenvironments in ECM and elucidate the roles of mechanical cues on cell biology in 3D cell culture and direct the function and fate of stem cells. | [127] |
Hydrogels | Highly purified HA made by fermentation | Adipose tissue derived mesenchymal stem cells as potential aid in articular cartilage repair for OA therapy and it could be material for cartilage regeneration. | [124] |
Microneedle patch | HA Commercial | Microneedles of HA with hemagglutinins of influenza for vaccination, inducing an immune response. | [128] |
4. Structure and Penetration Routes of the Skin
5. Future Trends
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Muntean, C.; Juncan, A.M.; Moisa, D.G. Primary Packaging and Stability Evaluation of a Serum Used for the Periorbital Area of the Sensitive Eye. Mater. Plast. 2019, 56, 360–365. [Google Scholar] [CrossRef]
- Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R. Rep. 2021, 146, 100641. [Google Scholar] [CrossRef]
- Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Dalir, E.; Vahedi, P.; Hasanzadeh, A.; Samiei, M. The Potential Applications of Hyaluronic Acid Hydrogels in Biomedicine. Drug Res. 2020, 70, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid—Based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef] [PubMed]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Juncan, A.M.; Moisa, D.G.; Santini, A.; Morgovan, C.; Rus, L.L.; Vonica-Tincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- de Souza, A.B.; Chaud, M.V.; Santana, M.H.A. Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydr. Polym. 2019, 222, 115001. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef]
- Boeriu, C.G.; Springer, J.; Kooy, F.K.; van den Broek, L.A.M.; Eggink, G. Production Methods for Hyaluronan. Int. J. Carbohydr. Chem. 2013, 2013, 624967. [Google Scholar] [CrossRef]
- Megías, M.; Molist, P.; Pombal, M.A. Atlas de Histología Vegetal y Animal. Available online: http://mmegias.webs.uvigo.es/inicio.html. (accessed on 10 August 2023).
- Cardoso, M.J.; Caridade, S.G.; Costa, R.R.; Mano, J.F. Enzymatic Degradation of Polysaccharide-Based Layer-by-Layer Structures. Biomacromolecules 2016, 17, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- de Melo, B.A.G.; Santana, M.H.A. Structural Modifications and Solution Behavior of Hyaluronic Acid Degraded with High pH and Temperature. Appl. Biochem. Biotechnol. 2019, 189, 424–436. [Google Scholar] [CrossRef]
- Cowman, M.K.; Lee, H.G.; Schwertfeger, K.L.; McCarthy, J.B.; Turley, E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Essendoubi, M.; Gobinet, C.; Reynaud, R.; Angiboust, J.-F.; Manfait, M.; Piot, O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Ski. Res. Technol. 2015, 22, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.; Gimeno, K.I.; Guan, G.; Caliari, S.R. Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules 2019, 20, 4126–4134. [Google Scholar] [CrossRef]
- Fraser, J.R.; Laurent, T.C.; Laurent, U.B. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef]
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef]
- Attia, Y.A.; Kobeasy, M.I.; Samer, M. Evaluation of magnetic nanoparticles influence on hyaluronic acid production from Streptococcus equi. Carbohydr. Polym. 2018, 192, 135–142. [Google Scholar] [CrossRef]
- Güngör, G.; Gedikli, S.; Toptaş, Y.; Sezgin, D.; Demirbilek, M.; Yazihan, N.; Aytar Çelik, P.; Denkbas, E.; Çabuk, A. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. J. Chem. Technol. Biotechnol. 2019, 94, 1843–1852. [Google Scholar] [CrossRef]
- Mohan, N.; Pavan, S.S.; Achar, A.; Swaminathan, N.; Sivaprakasam, S. Calorespirometric investigation of Streptococcus zooepidemicus metabolism: Thermodynamics of anabolic payload contribution by growth and hyaluronic acid synthesis. Biochem. Eng. J. 2019, 152, 107367. [Google Scholar] [CrossRef]
- Pan, N.C.; Pereira, H.C.B.; da Silva, M.L.C.; Vasconcelos, A.F.D.; Celligoi, M. Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Appl. Biochem. Biotechnol. 2017, 182, 276–293. [Google Scholar] [CrossRef] [PubMed]
- Pourzardosht, N.; Rasaee, M.J. Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene. Mol. Biotechnol. 2017, 59, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Rohit, S.G.; Jyoti, P.K.; Subbi, R.R.T.; Naresh, M.; Senthilkumar, S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem. Eng. J. 2018, 137, 284–293. [Google Scholar] [CrossRef]
- Pires, A.M.B.; Macedo, A.C.; Eguchi, S.Y.; Santana, M.H.A. Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresour. Technol. 2010, 101, 6506–6509. [Google Scholar] [CrossRef]
- Galla, R.; Ruga, S.; Aprile, S.; Ferrari, S.; Brovero, A.; Grosa, G.; Molinari, C.; Uberti, F. New Hyaluronic Acid from Plant Origin to Improve Joint Protection–An In Vitro Study. Int. J. Mol. Sci. 2022, 23, 8114. [Google Scholar]
- Agarwal, G.; Krishnan, V.K.; Prasad, S.B.; Bhaduri, A.; Jayaraman, G. Biosynthesis of Hyaluronic acid polymer: Dissecting the role of sub structural elements of hyaluronan synthase. Sci. Rep. 2019, 9, 12510. [Google Scholar] [CrossRef]
- Mandawe, J.; Infanzon, B.; Eisele, A.; Zaun, H.; Kuballa, J.; Davari, M.D.; Jakob, F.; Elling, L.; Schwaneberg, U. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid. Chembiochem 2018, 19, 1414–1423. [Google Scholar] [CrossRef]
- Schulte, S.; Doss, S.S.; Jeeva, P.; Ananth, M.; Blank, L.M.; Jayaraman, G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan. Appl. Microbiol. Biotechnol. 2019, 103, 7567–7581. [Google Scholar] [CrossRef]
- Tengblad, A.; Laurent, U.B.; Lilja, K.; Cahill, R.N.; Engström-Laurent, A.; Fraser, J.R.; Hansson, H.E.; Laurent, T.C. Concentration and relative molecular mass of hyaluronate in lymph and blood. Biochem. J. 1986, 236, 521–525. [Google Scholar] [CrossRef]
- Yuan, H.; Amin, R.; Ye, X.; de la Motte, C.A.; Cowman, M.K. Determination of hyaluronan molecular mass distribution in human breast milk. Anal. Biochem. 2015, 474, 78–88. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Fernández, N.; Matias, A.A.; Bronze, M.D.R. Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr. Polym. 2020, 243, 116441. [Google Scholar] [CrossRef]
- Urbi, Z.; Azmi, N.S.; Ming, L.C.; Hossain, M.S. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr. Issues Mol. Biol. 2022, 44, 3905–3922. [Google Scholar] [CrossRef] [PubMed]
- Amagai, I.; Tashiro, Y.; Ogawa, H. Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization. Fish. Sci. 2009, 75, 805–810. [Google Scholar] [CrossRef]
- Murado, M.A.; Montemayor, M.I.; Cabo, M.L.; Vázquez, J.A.; González, M.P. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process. 2012, 90, 491–498. [Google Scholar] [CrossRef]
- Sadhasivam, G.; Muthuvel, A.; Pachaiyappan, A.; Thangavel, B. Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatus narinari. Int. J. Biol. Macromol. 2013, 54, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Sakar, S.; Yetilmezsoy, K.; Kocak, E. Anaerobic digestion technology in poultry and livestock waste treatment—A literature review. Waste Manag. Res. 2009, 27, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Cullis-Hill, D. Preparation of Hyaluronic Acid from Synovial Fluid. U.S. Patent 4879375A, 7 November 1989. [Google Scholar]
- Nakano, T.; Nakano, K.; Sim, J.S. A Simple Rapid Method To Estimate Hyaluronic Acid Concentrations in Rooster Comb and Wattle Using Cellulose Acetate Electrophoresis. J. Agric. Food Chem. 1994, 42, 2766–2768. [Google Scholar] [CrossRef]
- Rosa; Rotta, J.; Barreto, P.; Beirão, L. Extraction, quantification, and molar mass determination of hyaluronic acid extracted from chicken crest. Aliment. Nutr. 2008, 18, 237–240. [Google Scholar]
- Kulkarni, S.; Patil, S.D.; Chavan, D.G. Extraction, purification and characterization of hyaluronic acid from Rooster comb. J. Appl. Nat. Sci. 2018, 10, 313–315. [Google Scholar] [CrossRef]
- Kang, D.Y.; Kim, W.S.; Heo, I.S.; Park, Y.H.; Lee, S. Extraction of hyaluronic acid (HA) from rooster comb and characterization using flow field-flow fractionation (FlFFF) coupled with multiangle light scattering (MALS). J. Sep. Sci. 2010, 33, 3530–3536. [Google Scholar] [CrossRef]
- Volpi, N.; Maccari, F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie 2003, 85, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Rosa; Tovar, A.; Mourão, P.; Pereira, R.; Barreto, P.; Beirão, L. Purification and characterization of hyaluronic acid from chicken combs. Ciência Rural 2012, 42, 1682–1687. [Google Scholar] [CrossRef]
- Kanchana, S.; Arumugam, M.; Giji, S.; Balasubramanian, T. Isolation, characterization and antioxidant activity of hyaluronic acid from marine bivalve mollusc Amussium pleuronectus (Linnaeus, 1758). Bioact. Carbohydr. Diet. Fibre 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Űrgeová, E.; Vulganová, K. Comparison of Enzymatic Hydrolysis of Polysaccharides from Eggshells Membranes. Nova Biotechnol. Chim. 2016, 15, 133–141. [Google Scholar] [CrossRef]
- Matsumura, G.; De Salegui, M.; Herp, A.; Pigman, W. The preparation of hyaluronic acid from bovine synovial fluid. Biochim. Biophys. Acta 1963, 69, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Long, F.D.; Adams, R.G.; Devore, D.P. Preparation of Hyaluronic Acid from Eggshell Membrane. U.S. Patent 6946551B2, 20 September 2005. [Google Scholar]
- Selyanin, M.; Khabarov, V.; Boykov, P. Hyaluronic Acid, 1st ed.; John Wiley & Sons, Ltd: Moscow, Russia, 2015; p. 198. [Google Scholar]
- Gherezghiher, T.; Koss, M.C.; Nordquist, R.E.; Wilkinson, C.P. Analysis of vitreous and aqueous levels of hyaluronic acid: Application of high-performance liquid chromatography. Exp. Eye Res. 1987, 45, 347–349. [Google Scholar] [CrossRef]
- Balazs, E.A. Ultrapure Hyaluronic Acid and the Use Thereof. U.S. Patent 4.141.973, 27 February 1979. [Google Scholar]
- Khanmohammadi, M.; Khoshfetrat, A.B.; Eskandarnezhad, S.; Sani, N.F.; Ebrahimi, S. Sequential optimization strategy for hyaluronic acid extraction from eggshell and its partial characterization. J. Ind. Eng. Chem. 2014, 20, 4371–4376. [Google Scholar] [CrossRef]
- Akram, A.N.; Zhang, C. Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrason. Sonochem 2020, 64, 105053. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Gao, R.; Li, L.; Yang, X.; Wu, Y.; Hu, X. Degradation of hyaluronic acid derived from tilapia eyeballs by a combinatorial method of microwave, hydrogen peroxide, and ascorbic acid. Polym. Degrad. Stab. 2015, 112, 117–121. [Google Scholar] [CrossRef]
- Chemat, F.; Huma, Z.-e.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Álvarez, G. Proceso de Extracción de Colágeno Mediante Ultrasonido de Alta. Intensidad. Patent 395303, 22 August 2022. [Google Scholar]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Hafsa, J.; Chaouch, M.A.; Charfeddine, B.; Rihouey, C.; Limem, K.; Le Cerf, D.; Rouatbi, S.; Majdoub, H. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities. Pharm. Biol. 2017, 55, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Swann, D.A. Studies on hyaluronic acid: I. The preparation and properties of rooster comb hyaluronic acid. Biochim. Biophys. Acta-Gen. Subj. 1968, 156, 17–30. [Google Scholar] [CrossRef]
- Boas, N.F. Isolation of hyaluronic acid from the cock’s comb. J. Biol. Chem. 1949, 181, 573–575. [Google Scholar] [CrossRef]
- Mirzayeva, T.; Čopíková, J.; Kvasnička, F.; Bleha, R.; Synytsya, A. Screening of the Chemical Composition and Identification of Hyaluronic Acid in Food Supplements by Fractionation and Fourier-Transform Infrared Spectroscopy. Polymers 2021, 13, 4002. [Google Scholar] [CrossRef]
- Zając, M.; Kulawik, P.; Tkaczewska, J.; Migdał, W.; Filipczak-Fiutak, M.; Fiutak, G. The effect of hyaluronic acid addition on the properties of smoked homogenised sausages. J. Sci. Food Agric. 2017, 97, 2316–2326. [Google Scholar] [CrossRef]
- Martinez-Puig, D.; Möller, I.; Fernández, C.; Chetrit, C. Efficacy of oral administration of yoghurt supplemented with a preparation containing hyaluronic acid (Mobilee™) in adults with mild joint discomfort: A randomized, double-blind, placebo-controlled intervention study. Mediterr. J. Nutr. Metab. 2013, 6, 63–68. [Google Scholar] [CrossRef]
- Sutariya, S.G.; Salunke, P. Effect of hyaluronic acid on milk properties: Rheology, protein stability, acid and rennet gelation properties. Food Hydrocoll. 2022, 131, 107740. [Google Scholar] [CrossRef]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef]
- Faria-Silva, C.; Ascenso, A.; Costa, A.M.; Marto, J.; Carvalheiro, M.; Ribeiro, H.M.; Simões, S. Feeding the skin: A new trend in food and cosmetics convergence. Trends Food Sci. Technol. 2020, 95, 21–32. [Google Scholar] [CrossRef]
- Hsu, T.F.; Su, Z.R.; Hsieh, Y.H.; Wang, M.F.; Oe, M.; Matsuoka, R.; Masuda, Y. Oral Hyaluronan Relieves Wrinkles and Improves Dry Skin: A 12-Week Double-Blinded, Placebo-Controlled Study. Nutrients 2021, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Oe, M.; Sakai, S.; Yoshida, H.; Okado, N.; Kaneda, H.; Masuda, Y.; Urushibata, O. Oral hyaluronan relieves wrinkles: A double-blinded, placebo-controlled study over a 12-week period. Clin. Cosmet. Investig. Dermatol. 2017, 10, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, C.; Yu, L.; Zhang, C.; Zhao, J.; Narbad, A.; Zhai, Q.; Tian, F. In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function. Polymers 2023, 15, 2103. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, C.; Spirito, L.; Calace, F.P.; Balsamo, R.; Terribile, M.; Stizzo, M.; Romano, L.; Napolitano, L.; Califano, G.; Cirillo, L.; et al. Oral Preparation of Hyaluronic Acid, Chondroitin Sulfate, Curcumin, and Quercetin (Ialuril® Soft Gels) for the Prevention of LUTS after Intravesical Chemotherapy. Pathophysiology 2022, 29, 365–373. [Google Scholar] [PubMed]
- Sifre, V.; Soler, C.; Segarra, S.; Redondo, J.I.; Doménech, L.; Ten-Esteve, A.; Vilalta, L.; Pardo-Marín, L.; Serra, C.I. Improved Joint Health Following Oral Administration of Glycosaminoglycans with Native Type II Collagen in a Rabbit Model of Osteoarthritis. Animals 2022, 12, 1401. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Ebrahimi-kalan, A.; Yılmaz, B. Research & Reviews in Health Sciences—I; Gece Publishing: Ankara, Turkey, 2021; pp. 177–211. [Google Scholar]
- Laurent, T.C.; Fraser, J.R. Hyaluronan. FASEB J. 1992, 6, 2397–2404. [Google Scholar] [CrossRef]
- Kimura, M.; Maeshima, T.; Kubota, T.; Kurihara, H.; Masuda, Y.; Nomura, Y. Absorption of Orally Administered Hyaluronan. J. Med. Food 2016, 19, 1172–1179. [Google Scholar] [CrossRef]
- Fritz, P.; Mayer, L.; Bóday, P.; Maszlag, A.; Fritz, R. Efficacy Study of a Dietary Supplement Containing Collagen-L-Arginine-Hyaluronic Acid in Elderly Patients with Musculoskeletal Complaints. Preprints 2023, 2023061307. [Google Scholar]
- Ferguson, E.L.; Roberts, J.L.; Moseley, R.; Griffiths, P.C.; Thomas, D.W. Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. Int. J. Pharm. 2011, 420, 84–92. [Google Scholar] [CrossRef]
- Neuman, M.; Nanau, R.; Oruña-Sanchez, L.; Coto, G. Hyaluronic Acid and Wound Healing. J. Pharm. Pharm. Sci. 2015, 18, 53–60. [Google Scholar] [CrossRef]
- Dong, Y.; An, I.; Ma, L.; An, S. Welcome to a new era of Biomedical Dermatology. Biomed. Dermatol. 2017, 1, 3. [Google Scholar] [CrossRef]
- Salwowska, N.M.; Bebenek, K.A.; Żądło, D.A.; Wcisło-Dziadecka, D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J. Cosmet. Dermatol. 2016, 15, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Oh, J.H.; Chung, J.H. Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 2016, 83, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Vasava, P.; Khan, S.L.; Siddiqui, F.A.; Islam, F.; Chopra, H.; Emran, T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg. 2022, 82, 104595. [Google Scholar] [CrossRef]
- Chen, M.; Gupta, V.; Anselmo, A.C.; Muraski, J.A.; Mitragotri, S. Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J. Control. Release 2014, 173, 67–74. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Kweon, D.K.; Park, H.J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr. Polym. 2011, 86, 837–843. [Google Scholar] [CrossRef]
- Tokudome, Y.; Komi, T.; Omata, A.; Sekita, M. A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci. Rep. 2018, 8, 2336. [Google Scholar] [CrossRef]
- Hong, J.Y.; Ko, E.J.; Choi, S.Y.; Li, K.; Kim, A.R.; Park, J.O.; Kim, B.J. Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J. Cosmet. Dermatol. 2018, 17, 235–241. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kwon, H.J.; Ahn, G.R.; Ko, E.J.; Yoo, K.H.; Kim, B.J.; Lee, C.; Kim, D. Hyaluronic acid microneedle patch for the improvement of crow’s feet wrinkles. Dermatol. Ther. 2017, 30, e12546. [Google Scholar] [CrossRef]
- Duarah, S.; Sharma, M.; Wen, J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm. 2019, 136, 48–69. [Google Scholar] [CrossRef] [PubMed]
- Avcil, M.; Akman, G.; Klokkers, J.; Jeong, D.; Çelik, A. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study. J. Cosmet. Dermatol. 2020, 19, 328–337. [Google Scholar] [CrossRef]
- Witting, M.; Boreham, A.; Brodwolf, R.; Vávrová, K.; Alexiev, U.; Friess, W.; Hedtrich, S. Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 2015, 12, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Baek, S.; Kang, G.; Yang, H.; Kim, S.; Jung, H. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. Int. J. Cosmet. Sci. 2020, 42, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.N.; Jeong, J.H.; Nam, S.Y.; Lim, S.Y.; Long, N.V.; Zhang, X.R.; Jeong, J.H.; Heo, C.Y. Nanomicelle-generating Microneedles Loaded With Tranilast for Treatment of Hypertrophic Scars in a Rabbit Model. In Vivo 2022, 36, 1734–1744. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, H.; Mao, J.; Li, Y.; Hussain, M.; Zhu, J. Enhanced in vitro Efficacy for Inhibiting Hypertrophic Scar by Bleomycin-loaded Dissolving Hyaluronic Acid Microneedles. J. Mater. Chem. B 2019, 7, 6604–6611. [Google Scholar] [CrossRef]
- Yorke, K.; Amin, S. High Performance Conditioning Shampoo with Hyaluronic Acid and Sustainable Surfactants. Cosmetics 2021, 8, 71. [Google Scholar] [CrossRef]
- Lin, S.; Quan, G.; Hou, A.; Yang, P.; Peng, T.; Gu, Y.; Qin, W.; Liu, R.; Ma, X.; Pan, X.; et al. Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control. Release 2019, 306, 69–82. [Google Scholar] [CrossRef]
- Wongprasert, P.; Dreiss, C.A.; Murray, G. Evaluating hyaluronic acid dermal fillers: A critique of current characterization methods. Dermatol. Ther. 2022, 35, e15453. [Google Scholar] [CrossRef]
- Tezel, A.; Fredrickson, G.H. The science of hyaluronic acid dermal fillers. J. Cosmet. Laser Ther. 2008, 10, 35–42. [Google Scholar] [CrossRef]
- Fundarò, S.P.; Salti, G.; Malgapo, D.M.; Innocenti, S. The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int. J. Mol. Sci. 2022, 23, 10518. [Google Scholar] [CrossRef] [PubMed]
- Stephen, E.L. Particulate Matter in Injectable Drug Products. PDA J. Pharm. Sci. Technol. 2013, 67, 186. [Google Scholar] [CrossRef]
- Lee, W.; Rho, N.-K.; Yang, E.-J. Determination of Hyaluronic Acid Dermal Filler Impurities Using SEM/EDS Analysis. Polymers 2023, 15, 1649. [Google Scholar] [CrossRef] [PubMed]
- Rho, N.-K.; Goo, B.L.; Youn, S.-J.; Won, C.-H.; Han, K.-H. Lip Lifting Efficacy of Hyaluronic Acid Filler Injections: A Quantitative Assessment Using 3-Dimensional Photography. J. Clin. Med. 2022, 11, 4554. [Google Scholar] [CrossRef]
- Zamboni, F.; Keays, M.; Hayes, S.; Albadarin, A.B.; Walker, G.M.; Kiely, P.A.; Collins, M.N. Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels. Int. J. Pharm. 2017, 532, 595–602. [Google Scholar] [CrossRef]
- He, T.; Li, B.; Colombani, T.; Joshi-Navare, K.; Mehta, S.; Kisiday, J.; Bencherif, S.A.; Bajpayee, A.G. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Eng. Part A 2021, 27, 748–760. [Google Scholar] [CrossRef]
- Lima, G.G.; Rocha Neto, J.B.M.; Carvalho, H.F.d.; Beppu, M.M. Control of Surface Properties of Hyaluronan/Chitosan Multilayered Coatings for Tumor Cell Capture. Polysaccharides 2021, 2, 387–399. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, S.-J.; Dong, H.-T.; Zhang, X.-Q.; Li, J.-A.; Guan, S.-K. A novel MgF2/PDA/S-HA coating on the bio-degradable ZE21B alloy for better multi-functions on cardiovascular application. J. Magnes. Alloys 2021, 11, 480–492. [Google Scholar] [CrossRef]
- Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.-H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23, 20. [Google Scholar] [CrossRef]
- Ayhan, E.; Kesmezacar, H.; Akgun, I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J. Orthop. 2014, 5, 351–361. [Google Scholar] [CrossRef]
- Kang, L.-J.; Yoon, J.; Rho, J.G.; Han, H.S.; Lee, S.; Oh, Y.S.; Kim, H.; Kim, E.; Kim, S.J.; Lim, Y.T.; et al. Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials 2021, 275, 120967. [Google Scholar] [CrossRef] [PubMed]
- Lierova, A.; Kasparova, J.; Pejchal, J.; Kubelkova, K.; Jelicova, M.; Palarcik, J.; Korecka, L.; Bilkova, Z.; Sinkorova, Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front. Pharmacol. 2020, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206–7213. [Google Scholar] [CrossRef] [PubMed]
- Si, H.; Xing, T.; Ding, Y.; Zhang, H.; Yin, R.; Zhang, W. 3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels. Polymers 2019, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Man, Y.; Li, W.; Li, L.; Xu, J.; Parungao, R.; Wang, Y.; Zheng, S.; Nie, Y.; Liu, T.; et al. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds. Polymers 2019, 11, 1601. [Google Scholar] [CrossRef] [PubMed]
- Kari, O.K.; Tavakoli, S.; Parkkila, P.; Baan, S.; Savolainen, R.; Ruoslahti, T.; Johansson, N.G.; Ndika, J.; Alenius, H.; Viitala, T.; et al. Light-Activated Liposomes Coated with Hyaluronic Acid as a Potential Drug Delivery System. Pharmaceutics 2020, 12, 763. [Google Scholar] [CrossRef]
- Parolin, C.; Abruzzo, A.; Giordani, B.; Oliver, J.C.; Marangoni, A.; Luppi, B.; Vitali, B. Anti-Candida Activity of Hyaluronic Acid Combined with Lactobacillus crispatus Lyophilised Supernatant: A New Antifungal Strategy. Antibiotics 2021, 10, 628. [Google Scholar] [CrossRef]
- Cermelli, C.; Cuoghi, A.; Scuri, M.; Bettua, C.; Neglia, R.G.; Ardizzoni, A.; Blasi, E.; Iannitti, T.; Palmieri, B. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid. Virol. J. 2011, 8, 141. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Neglia, R.G.; Baschieri, M.C.; Cermelli, C.; Caratozzolo, M.; Righi, E.; Palmieri, B.; Blasi, E. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J. Mater. Sci. Mater. Med. 2011, 22, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Russu, O.M.; Pop, T.S.; Feier, A.M.; Trâmbițaș, C.; Incze-Bartha, Z.; Borodi, P.G.; Gergely, I.; Zuh, S.-G. Treatment Efficacy with a Novel Hyaluronic Acid-Based Hydrogel for Osteoarthritis of the Knee. J. Pers. Med. 2021, 11, 303. [Google Scholar] [CrossRef]
- Carvalho, J.P.F.; Silva, A.C.Q.; Bastos, V.; Oliveira, H.; Pinto, R.J.B.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Nanocellulose-Based Patches Loaded with Hyaluronic Acid and Diclofenac towards Aphthous Stomatitis Treatment. Nanomaterials 2020, 10, 628. [Google Scholar] [CrossRef]
- Catenacci, L.; Marrubini, G.; Sorrenti, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Fagnani, V.; Valentino, C.; Bonferoni, M.C. Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials 2020, 10, 635. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, G.; Zhang, Y.; Liu, D.; Xu, B.; Zhou, J. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Peramo, A.; Marcelo, C.L.; Goldstein, S.A.; Martin, D.C. Improved preservation of the tissue surrounding percutaneous devices by hyaluronic acid and dermatan sulfate in a human skin explant model. Ann. Biomed. Eng. 2010, 38, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Dubashynskaya, N.V.; Bokatyi, A.N.; Gasilova, E.R.; Dobrodumov, A.V.; Dubrovskii, Y.A.; Knyazeva, E.S.; Nashchekina, Y.A.; Demyanova, E.V.; Skorik, Y.A. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. Int. J. Biol. Macromol. 2022, 215, 243–252. [Google Scholar] [CrossRef]
- Dubashynskaya, N.V.; Bokatyi, A.N.; Sall, T.S.; Egorova, T.S.; Nashchekina, Y.A.; Dubrovskii, Y.A.; Murashko, E.A.; Vlasova, E.N.; Demyanova, E.V.; Skorik, Y.A. Cyanocobalamin-Modified Colistin&Hyaluronan Conjugates: Synthesis and Bioactivity. Int. J. Mol. Sci. 2023, 24, 11550. [Google Scholar]
- Soriano-Ruiz, J.L.; Pérez-González, N.; Febrer, N.B.-d.; Rincón, M.; Clares, B.; Calpena, A.C. A Novel Hydrogel of Poloxamer 407-Chitosan-hyaluronic Acid as Possible Wound Healing in Skin and Mucosa. Proceedings 2021, 78, 53. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Z.; Li, M.; Liu, Y.; Wang, W.; Sun, P.; Wei, S.; Wang, Z.; Li, J.; Dardik, A. Hyaluronic acid-heparin conjugated decellularized human great saphenous vein patches decrease neointimal thickness. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2417–2425. [Google Scholar] [CrossRef]
- Lou, J.; Stowers, R.; Nam, S.; Xia, Y.; Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 2018, 154, 213–222. [Google Scholar] [CrossRef]
- Mondal, S.; Haridas, N.; Letha, S.S.; Vijith, V.; Rajmohan, G.; Rosemary, M.J. Development of injectable high molecular weight hyaluronic acid hydrogels for cartilage regeneration. J. Macromol. Sci. Part A 2016, 53, 507–514. [Google Scholar] [CrossRef]
- Hirobe, S.; Azukizawa, H.; Hanafusa, T.; Matsuo, K.; Quan, Y.S.; Kamiyama, F.; Katayama, I.; Okada, N.; Nakagawa, S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015, 57, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Presland, R.B.; Dale, B.A. Epithelial structural proteins of the skin and oral cavity: Function in health and disease. Crit. Rev. Oral. Biol. Med. 2000, 11, 383–408. [Google Scholar] [CrossRef]
- Ananthapadmanabhan, K.P.; Mukherjee, S.; Chandar, P. Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing. Int. J. Cosmet. Sci. 2013, 35, 337–345. [Google Scholar] [CrossRef]
- Rahma, A.; Lane, M.E. Skin Barrier Function in Infants: Update and Outlook. Pharmaceutics 2022, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Álvarez, G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Serrano Castañeda, P.; Escobar-Chávez, J.; Rodríguez Cruz, I.; Melgoza, L.; Martínez-Hernández, J. Microneedles as Enhancer of Drug Absorption Through the Skin and Applications in Medicine and Cosmetology. J. Pharm. Pharm. Sci. 2018, 21, 73–93. [Google Scholar] [CrossRef]
- McGrath, J.; Eady, R.; Pope, F. Anatomy and Organization of Human Skin. In Rook’s Texbook of Dermatology; Burns, T., Breathnatch, S., Griffits, C., Eds.; Blackwell Science Ltd: London, UK, 2008; pp. 45–128. [Google Scholar]
- Meza, C. Layers of the Skin. Available online: https://medium.com/@cindymeza/layers-of-the-skin-fa974368418 (accessed on 16 June 2023).
- Haque, T.; Talukder, M.M.U. Chemical Enhancer: A Simplistic Way to Modulate Barrier Function of the Stratum Corneum. Adv. Pharm. Bull. 2018, 8, 169–179. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. [Google Scholar] [CrossRef]
- Escobar-Chavez, J.J.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. In vivo skin permeation of sodium naproxen formulated in pluronic F-127 gels: Effect of Azone and Transcutol. Drug Dev. Ind. Pharm. 2005, 31, 447–454. [Google Scholar] [CrossRef]
- Barry, B.W. Drug delivery routes in skin: A novel approach. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. S1), S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef] [PubMed]
- Szunerits, S.; Boukherroub, R. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery. Front. Bioeng. Biotechnol. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Dhamecha, D.; Rajendra, V.; Rathi, A.; Ghadlinge, S.; Saifee, M.; Dehghan, M.H. Physical Approaches to Penetration Enhancement. Int. J. Health Res. 2011, 3, 57–70. [Google Scholar] [CrossRef]
- Kaushik, A. Penetration Enhancement of Medicinal Agents. Int. Res. J. Pharm. 2012, 3, 82–88. [Google Scholar]
- Yang, J.-A.; Kim, E.-S.; Kwon, J.H.; Kim, H.; Shin, J.H.; Yun, S.H.; Choi, K.Y.; Hahn, S.K. Transdermal delivery of hyaluronic acid—Human growth hormone conjugate. Biomaterials 2012, 33, 5947–5954. [Google Scholar] [CrossRef]
Product | Source | Functionality | Reference |
---|---|---|---|
Smoked homogenized sausages with HA | Food-grade HA (94, 27%) | Effects of HA as additive and the effect properties of processed meat products. | [63] |
Yoghurt supplemented with HA | HA (65%) rooster comb (MobileeTM, Beriberi S.A., Palafolls, Spain) | Efficacy of the oral administration in healthy individuals with mild joint discomfort. | [64] |
Milk | Commercial HA | Effect of polymer at several concentrations on various physicochemical properties of milk. | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graciela, C.-Q.; José Juan, E.-C.; Gieraldin, C.-L.; Xóchitl Alejandra, P.-M.; Gabriel, A.-Á. Hyaluronic Acid—Extraction Methods, Sources and Applications. Polymers 2023, 15, 3473. https://doi.org/10.3390/polym15163473
Graciela C-Q, José Juan E-C, Gieraldin C-L, Xóchitl Alejandra P-M, Gabriel A-Á. Hyaluronic Acid—Extraction Methods, Sources and Applications. Polymers. 2023; 15(16):3473. https://doi.org/10.3390/polym15163473
Chicago/Turabian StyleGraciela, Callejas-Quijada, Escobar-Chávez José Juan, Campos-Lozada Gieraldin, Pérez-Marroquín Xóchitl Alejandra, and Aguirre-Álvarez Gabriel. 2023. "Hyaluronic Acid—Extraction Methods, Sources and Applications" Polymers 15, no. 16: 3473. https://doi.org/10.3390/polym15163473
APA StyleGraciela, C. -Q., José Juan, E. -C., Gieraldin, C. -L., Xóchitl Alejandra, P. -M., & Gabriel, A. -Á. (2023). Hyaluronic Acid—Extraction Methods, Sources and Applications. Polymers, 15(16), 3473. https://doi.org/10.3390/polym15163473