Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
- The findings of this study are very practical and provide the greatest application potential in the research and development stage of a new metal part.
- The reduction in the manufacturing time of an injection mold made by RT technology is about 30.3% compared with that of the fabricated conventional machining method.
- The reduction in production cost of an injection mold by Al-filled epoxy resin is about 30.4% compared with that of the fabricated conventional mold steel.
- The longevity of the injection mold fabricated by Al-filled epoxy resin is about 1300 molding cycles. The mold service life of an injection mold fabricated by Al-filled epoxy resin is about 1.3% of that of conventional mold steel.
- The copper powder, molybdenum disulfide, zirconia ceramics, or silicon nitride ceramics particles were recommended to add to the mixture to improve the mechanical properties and heat transfer capability of Al-filled epoxy resin.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Basir, A.; Muhamad, N.; Sulong, A.B.; Jamadon, N.H.; Foudzi, F.M. Recent Advances in Processing of Titanium and Titanium Alloys through Metal Injection Molding for Biomedical Applications. Materials 2023, 16, 3991. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Kadoya, S.; Kajihara, Y. Effects of molding conditions on injection molded direct joining under various surface fine-structuring. Int. J. Adv. Manuf. Technol. 2019, 101, 2703–2712. [Google Scholar] [CrossRef]
- Liu, L.; Ni, X.L.; Yin, H.Q.; Qu, X.H. Mouldability of various zirconia micro gears in micro powder injection moulding. J. Eur. Ceram. Soc. 2015, 35, 171–177. [Google Scholar] [CrossRef]
- Attia, U.M.; Alcock, J.R. Fabrication of hollow, 3D, micro-scale metallic structures by micro-powder injection moulding. J. Mater. Process. Technol. 2012, 212, 2148–2153. [Google Scholar] [CrossRef]
- Belgacem, M.; Thierry, B.; Jean-Claude, G. Investigations on thermal debinding process for fine 316L stainless steel feedstocks and identification of kinetic parameters from coupling experiments and finite element simulations. Powder Technol. 2013, 235, 192–202. [Google Scholar] [CrossRef]
- Mamen, B.; Song, J.; Barriere, T.; Gelin, J.-C. Experimental and numerical analysis of the particle size effect on the densification behaviour of metal injection moulded tungsten parts during sintering. Powder Technol. 2015, 270, 230–243. [Google Scholar] [CrossRef]
- Heng, S.Y.; Raza, M.R.; Muhamad, N.; Sulong, A.B.; Fayyaz, A. Micro-powder injection molding (μPIM) of tungsten carbide. Int. J. Refract. Met. Hard Mater. 2014, 45, 189–195. [Google Scholar] [CrossRef]
- Thavanayagam, G.; Pickering, K.L.; Swan, J.E.; Cao, P. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol. 2015, 269, 227–232. [Google Scholar] [CrossRef]
- Sidambe, A.T.; Figueroa, I.A.; Hamilton, H.G.C.; Todd, I. Metal injection moulding of CP-Ti components for biomedical applications. J. Mater. Process. Technol. 2012, 212, 1591–1597. [Google Scholar] [CrossRef]
- Safarian, A.; Subaşi, M.; Karataş, Ç. The effect of sintering parameters on diffusion bonding of 316L stainless steel in inserted metal injection molding. Int. J. Adv. Manuf. Technol. 2017, 89, 2165–2173. [Google Scholar] [CrossRef]
- Sahli, M.; Lebied, A.; Gelin, J.C.; Barriere, T.; Necib, B. Numerical simulation and experimental analysis of solid-state sintering response of 316L stainless steel micro-parts manufactured by metal injection molding. Int. J. Adv. Manuf. Technol. 2018, 79, 2079–2092. [Google Scholar] [CrossRef]
- Hayat, M.D.; Li, T.; Wen, G.; Cao, P. Suitability of PEG/PMMA-based metal injection moulding feedstock: An experimental study. Int. J. Adv. Manuf. Technol. 2015, 80, 1665–1671. [Google Scholar] [CrossRef]
- Imgrund, P.; Rota, A.; Petzoldt, F.; Simchi, A. Manufacturing of multi-functional micro parts by two-component metal injection moulding. Int. J. Adv. Manuf. Technol. 2007, 33, 176–186. [Google Scholar] [CrossRef]
- Oh, J.W.; Lee, W.S.; Park, S.J. Investigation and modeling of binder removal process in nano/micro bimodal powder injection molding. Int. J. Adv. Manuf. Technol. 2018, 97, 4115–4126. [Google Scholar] [CrossRef]
- Kate, K.H.; Enneti, R.K.; Atre, S.V. Influence of feedstock properties on the injection molding of aluminum nitride. Int. J. Adv. Manuf. Technol. 2017, 90, 2813–2826. [Google Scholar] [CrossRef]
- Lamarre, S.G.; Demers, V.; Chatelain, J.-F. Low-pressure powder injection molding using an innovative injection press concept. Int. J. Adv. Manuf. Technol. 2017, 91, 2595–2605. [Google Scholar] [CrossRef]
- Zhang, J.; Sahli, M.; Gelin, J.-C.; Khan-Malek, C. Experimental analysis of the evolution of the physical properties of pyramidal-shaped metallic replicas made using the MIM process. Int. J. Adv. Manuf. Technol. 2013, 68, 1063–1074. [Google Scholar] [CrossRef]
- Zhang, S.X.; Chandrasekaran, M.; Li, Q.F.; Ho, M.K.; Yong, M.S. Studies on the fabrication of tool steel components with micro-features by PIM. Int. J. Adv. Manuf. Technol. 2018, 38, 278–284. [Google Scholar] [CrossRef]
- Nayak, C.V.; Ramesh, M.; Desai, V.; Samanta, S.K. Fabrication of stainless steel based composite by metal injection moulding. Mater. Today Proc. 2018, 5, 6805–6814. [Google Scholar] [CrossRef]
- García, C.; Martín, F.; Herranz, G.; Berges, C.; Romero, A. Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding. Wear 2018, 414–415, 182–193. [Google Scholar] [CrossRef]
- Dehghan-Manshadi, A.; Bermingham, M.J.; Dargusch, M.S.; StJohn, D.H.; Qian, M. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol. 2017, 319, 289–301. [Google Scholar] [CrossRef]
- Thavanayagam, G.; Swan, J.E. Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technol. 2018, 326, 402–410. [Google Scholar] [CrossRef]
- Tian, X.; Li, Y.; Ma, D.; Han, J.; Xia, L. Strand width uniformly control for silicone extrusion additive manufacturing based on image processing. Int. J. Adv. Manuf. Technol. 2022, 119, 3077–3090. [Google Scholar] [CrossRef]
- Saciotto, V.R.; Diniz, A.E. An experimental evaluation of particle impact dampers applied on the tool for milling of hardened steel complex surface. Int. J. Adv. Manuf. Technol. 2022, 119, 7579–7597. [Google Scholar] [CrossRef]
- Kuo, C.C.; Zhu, Y.J.; Wu, Y.Z.; You, Z.Y. Development and application of a large injection mold with conformal cooling channels. Int. J. Adv. Manuf. Technol. 2019, 103, 689–701. [Google Scholar] [CrossRef]
- Kuo, C.C.; You, Z.Y. Development of injection molding tooling with conformal cooling channels fabricated by optimal process parameters. Int. J. Adv. Manuf. Technol. 2018, 96, 1003–1013. [Google Scholar] [CrossRef]
- Kuo, C.C.; Lyu, S.Y. A cost-effective approach using recycled materials to fabricate micro-hot embossing die for microfabrication. Int. J. Adv. Manuf. Technol. 2018, 94, 4365–4371. [Google Scholar] [CrossRef]
- Kuo, C.C.; Chen, W.H.; Liu, X.Z.; Liao, Y.L.; Chen, W.J.; Huang, B.Y.; Tsai, R.L. Development of a low-cost wax injection mold with high cooling efficiency. Int. J. Adv. Manuf. Technol. 2017, 93, 2081–2088. [Google Scholar] [CrossRef]
- Kuo, C.C.; Chen, W.H.; Zhang, J.W.; Tsai, D.A.; Cao, Y.L. A new method of manufacturing a rapid tooling with different cross-sectional cooling channels. Int. J. Adv. Manuf. Technol. 2017, 92, 3481–3487. [Google Scholar] [CrossRef]
- Kuo, C.C.; Li, M.R. Development of sheet metal forming dies with excellent mechanical properties using additive manufacturing and rapid tooling technologies. Int. J. Adv. Manuf. Technol. 2017, 90, 21–25. [Google Scholar] [CrossRef]
- Jiménez, I.; López, C.; Martinez-Romero, O.; Mares, P.; Siller, H.R.; DiabbJesús, J.; Sandoval-Robles, A.; Elías-Zúñiga, A. Investigation of residual stress distribution in single point incremental forming of aluminum parts by X-ray diffraction technique. Int. J. Adv. Manuf. Technol. 2017, 91, 2571–2580. [Google Scholar] [CrossRef]
- Kurt, M.; Kaynak, Y.; Kamber, O.S.; Mutlu, B.; Bakir, B.; Koklu, U. Influence of molding conditions on the shrinkage and roundness of injection molded parts. Int. J. Adv. Manuf. Technol. 2010, 46, 571–578. [Google Scholar] [CrossRef]
- Moayyedian, M.; Abhary, K.; Marian, R. The analysis of short shot possibility in injection molding process. Int. J. Adv. Manuf. Technol. 2017, 91, 3977–3989. [Google Scholar] [CrossRef]
- Wee, L.M.; Lim, G.C.; Zheng, H.Y. Dimensional analyses and surface quality of pulsed UV laser micro-machining of STAVAX stainless steel mold inserts. Int. J. Adv. Manuf. Technol. 2011, 57, 1011–1027. [Google Scholar] [CrossRef]
- Behera, A.K.; Lu, B.; Ou, H. Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types. Int. J. Adv. Manuf. Technol. 2016, 83, 1099–1111. [Google Scholar] [CrossRef]
- Sharma, A.; Balasubramaniam, R. A molecular dynamics simulation of wear mechanism of diamond tool in nanoscale cutting of copper beryllium. Int. J. Adv. Manuf. Technol. 2019, 102, 731–745. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.; Mia, M.; Asad, A.B.M.A.; Fardin, A. Manufacturing of Al Alloy Microrods by Micro Cutting in a Micromachining Center. Micromachines 2019, 10, 831. [Google Scholar] [CrossRef]
- Lee, W.-L.; Shih, P.-J.; Hsu, C.-C.; Dai, C.-L. Fabrication and Characterization of Flexible Thermoelectric Generators Using Micromachining and Electroplating Techniques. Micromachines 2019, 10, 660. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, H.; Zhao, J.; Cao, Z. Research on the Mechanism of Micro-Water Jet-Guided Laser Precision Drilling in Metal Sheet. Micromachines 2021, 12, 343. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Nguyen, T.-D.; Zhu, Y.-J.; Lin, S.-X. Rapid Development of an Injection Mold with High Cooling Performance Using Molding Simulation and Rapid Tooling Technology. Micromachines 2021, 12, 311. [Google Scholar] [CrossRef]
- Hojati, F.; Azarhoushang, B.; Daneshi, A.; Biermann, D. Laser pre-structure-assisted micro-milling of Ti6Al4V titanium alloy. Int. J. Adv. Manuf. Technol. 2022, 120, 1765–1776. [Google Scholar] [CrossRef]
- Hossein, A.; Hussein, H.M.; Kishawy, H.A. On the machinability of die/mold D2 steel material. Int. J. Adv. Manuf. Technol. 2016, 85, 735–740. [Google Scholar] [CrossRef]
- Sancaktar, E.; Bai, L. Electrically Conductive Epoxy Adhesives. Polymers 2011, 3, 427–466. [Google Scholar] [CrossRef]
- Karnati, S.; Liou, F.F.; Newkirk, J.W. Characterization of copper–nickel alloys fabricated using laser metal deposition and blended powder feedstocks. Int. J. Adv. Manuf. Technol. 2019, 103, 239–250. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, M.; Wang, W.; Liu, B.; Li, X. Encapsulating MoO2 Nanocrystals into Flexible Carbon Nanofibers via Electrospinning for High-Performance Lithium Storage. Polymers 2021, 13, 22. [Google Scholar] [CrossRef]
- Ahmad, H.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. 3D Nanoarchitecture of Polyaniline-MoS2 Hybrid Material for Hg(II) Adsorption Properties. Polymers 2020, 12, 2731. [Google Scholar] [CrossRef]
- Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int. J. Adv. Manuf. Technol. 2014, 70, 1143–1155. [Google Scholar] [CrossRef]
- Shimoe, S.; Peng, T.-Y.; Wakabayashi, Y.; Takenaka, H.; Iwaguro, S.; Kaku, M. Laser-Milled Microslits Improve the Bonding Strength of Acrylic Resin to Zirconia Ceramics. Polymers 2020, 12, 817. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Li, R.; Hou, Y.; Cao, H. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int. J. Adv. Manuf. Technol. 2019, 102, 2617–2632. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wen, D.D.; Deng, Z.H.; Li, S.; Wu, Q.P.; Jiang, J. Study on the grinding behavior of laser-structured grinding in silicon nitride ceramic. Int. J. Adv. Manuf. Technol. 2018, 96, 3081–3091. [Google Scholar] [CrossRef]
- Wie, J.; Kim, J. Thermal Properties of Binary Filler Hybrid Composite with Graphene Oxide and Pyrolyzed Silicon-Coated Boron Nitride. Polymers 2020, 12, 2553. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.; Kramps, M.; Ragoß, C.; Maier, H.R.; Jahnke, K. Histological and microradiographic appearances of Silicon Nitride and Aluminum Oxide in a rabbit femur implantation model. Mater. Werkst. 2004, 35, 9569–9573. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Hsieh, Y.-T.; Liu, W.-R. Enhanced Thermal Conductivity of Silicone Composites Filled with Few-Layered Hexagonal Boron Nitride. Polymers 2020, 12, 2072. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value |
---|---|
Injection time (s) | 0.108 |
Injection pressure (MPa) | 70 |
Injection speed (mm/s) | 80 |
Packing pressure (MPa) | 50 |
Packing time (s) | 1 |
Molding temperature (°C) | 160 |
Mold temperature (°C) | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-C.; Pan, X.-Y. Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers 2023, 15, 3513. https://doi.org/10.3390/polym15173513
Kuo C-C, Pan X-Y. Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers. 2023; 15(17):3513. https://doi.org/10.3390/polym15173513
Chicago/Turabian StyleKuo, Chil-Chyuan, and Xin-Yu Pan. 2023. "Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins" Polymers 15, no. 17: 3513. https://doi.org/10.3390/polym15173513
APA StyleKuo, C. -C., & Pan, X. -Y. (2023). Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers, 15(17), 3513. https://doi.org/10.3390/polym15173513