Preservation of Fresh-Cut ‘Maradol’ Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Biological Material
2.3. Polymeric Nanocapsule Preparation
2.4. Nanocapsule Characterization
2.4.1. Particle Size (Ps) and Polydispersity Index (PDI)
2.4.2. Zeta Potential (ζ) of Nanoparticles
2.4.3. Morphological Characterization of Nanocapsules
2.4.4. Determination of Nanocapsule Stability
2.5. Application of Nanocoatings on Fresh-Cut Papaya
2.6. Respiration Rate of Fresh-Cut Papaya Treated with Nanodispersions
2.7. Color Determination
2.8. Determination of Firmness in Fresh-Cut Papaya
2.9. Measurement of Pectin Methylesterase (PME) Activity
2.10. Evolution of Polyphenol Oxidase (PPO) Activity
2.11. Protein Determination
2.12. Total Phenolic Compound Measurement
2.13. Statistical Analysis
3. Results
3.1. Characterization of Nanoparticles
3.1.1. Particle Size, Polydispersity Index, and Zeta Potential
3.1.2. Morphology of Nanocapsules
3.1.3. Instability Mechanism of Nanocapsules
3.1.4. TSI of the Nanocapsules
3.2. Rate of CO2 Production in Papayas Treated with Nanocapsules
3.3. Effect of Nanoparticles on the Rate of O2 Consumption
3.4. pH and Acidity of Papaya Treated with Nanosystems
3.5. Color Changes of Fresh-Cut Papaya Treated with Nanocapsules of Lemon Oil or Curcumin
3.6. Changes in the Firmness of Fresh-Cut Papaya Treated with Different Nanosystems
3.7. PME Activity of Fresh-Cut Papaya Treated with Different Polymeric Nanoparticles
3.8. PPO Activity of Fresh-Cut Papaya Treated with Nanocapsule Systems
3.9. Changes in the Total Phenolic Content in Fresh-Cut Papaya Treated with Nanodispersions
4. Discussion
4.1. Ps, PDI, ζ, and Morphology of Nanocapsules
4.2. Stability of Nanocapsules
4.3. Respiration Rate of Fresh-Cut Papaya Treated with Nanocapsules
4.4. pH and Acidity of Fresh-Cut Papaya Treated with Nanocapsules
4.5. Changes in the Color of Fresh-Cut Papaya Treated with Nanosystems
4.6. Firmness of Fresh-Cut Papayas Treated with Nanocapsules
4.7. PME Activity in Fresh-Cut Papaya Treated with Nanoparticles
4.8. PPO Activity of Fresh-Cut Papaya Treated with Nanoparticles
4.9. Total Phenolic Content in Fresh-Cut Papaya Treated with Nanocapsules
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, M.D.; Stanley, R.A.; Eyles, A.; Ross, T. Innovative Processes and Technologies for Modified Atmosphere Packaging of Fresh and Fresh-Cut Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2019, 59, 411–422. [Google Scholar] [CrossRef]
- Hu, W.; Sarengaowa, W.; Guan, Y.; Feng, K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front. Microbiol. 2022, 13, 906069. [Google Scholar] [CrossRef] [PubMed]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Dotto, J.M.; Abihudi, S.A. Nutraceutical Value of Carica papaya: A Review. Sci. Afr. 2021, 13, e00933. [Google Scholar] [CrossRef]
- Valencia Sandoval, K.; Duana Ávila, D.; Hernández Gracia, T.J. Estudio Del Mercado de Papaya Mexicana: Un Análisis de Su Competitividad (2001–2015). Suma Negocios 2017, 8, 131–139. [Google Scholar] [CrossRef]
- Iturralde-García, R.D.; Cinco-Moroyoqui, F.J.; Martínez-Cruz, O.; Ruiz-Cruz, S.; Wong-Corral, F.J.; Borboa-Flores, J.; Cornejo-Ramírez, Y.I.; Bernal-Mercado, A.T.; Del-Toro-Sánchez, C.L. Emerging Technologies for Prolonging Fresh-Cut Fruits’ Quality and Safety during Storage. Horticulturae 2022, 8, 731. [Google Scholar] [CrossRef]
- Ayón-Reyna, L.E.; Tamayo-Limón, R.; Cárdenas-Torres, F.; López-López, M.E.; López-Angulo, G.; López-Moreno, H.S.; López-Cervántes, J.; López-Valenzuela, J.A.; Vega-García, M.O. Effectiveness of Hydrothermal-Calcium Chloride Treatment and Chitosan on Quality Retention and Microbial Growth during Storage of Fresh-Cut Papaya. J. Food Sci. 2015, 80, C594–C601. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Valenzuela-Soto, E.; Lizardi-Mendoza, J.; Goycoolea, F.; Martínez-Téllez, M.A.; Villegas-Ochoa, M.A.; Monroy-García, I.N.; Ayala-Zavala, J.F. Effect of Chitosan Coating in Preventing Deterioration and Preserving the Quality of Fresh-Cut Papaya “Maradol”. J. Sci. Food Agric. 2009, 89, 15–23. [Google Scholar] [CrossRef]
- Kuwar, U.; Sharma, S.; Tadapaneni, V.R.R. Aloe Vera Gel and Honey-Based Edible Coatings Combined with Chemical Dip as a Safe Means for Quality Maintenance and Shelf Life Extension of Fresh-Cut Papaya. J. Food Qual. 2015, 38, 347–358. [Google Scholar] [CrossRef]
- Waghmare, R.B.; Annapure, U.S. Combined Effect of Chemical Treatment and/or Modified Atmosphere Packaging (MAP) on Quality of Fresh-Cut Papaya. Postharvest Biol. Technol. 2013, 85, 147–153. [Google Scholar] [CrossRef]
- Antunes, M.D.; Gago, C.M.; Cavaco, A.M.; Miguel, M.G. Edible Coatings Enriched with Essential Oils and Their Compounds for Fresh and Fresh-Cut Fruit. Recent Patents Food Nutr. Agric. 2012, 4, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.; Phillips, C.A. The Effect of Lemon, Orange and Bergamot Essential Oils and Their Components on the Survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus In Vitro and in Food Systems. J. Appl. Microbiol. 2006, 101, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus Lemon Essential Oil: Chemical Composition, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Himed, L.; Merniz, S.; Monteagudo-Olivan, R.; Barkat, M.; Coronas, J. Antioxidant Activity of the Essential Oil of Citrus Limon before and after Its Encapsulation in Amorphous SiO2. Sci. Afr. 2019, 6, e00181. [Google Scholar] [CrossRef]
- Jyotirmayee, B.; Mahalik, G. A Review on Selected Pharmacological Activities of Curcuma longa L. Int. J. Food Prop. 2022, 25, 1377–1398. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Blázquez, M.A. Curcuma longa L. Rhizome Essential Oil from Extraction to Its Agri-Food Applications. A Review. Plants 2021, 10, 44. [Google Scholar] [CrossRef]
- Zou, Y.; Yu, Y.; Cheng, L.; Li, L.; Zou, B.; Wu, J.; Zhou, W.; Li, J.; Xu, Y. Effects of Curcumin-Based Photodynamic Treatment on Quality Attributes of Fresh-Cut Pineapple. LWT 2021, 141, 110902. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, F.; Liu, B.; Chen, X.; Meng, X. Antibacterial Mechanism and Preservation Effect of Curcumin-Based Photodynamic Extends the Shelf Life of Fresh-Cut Pears. LWT 2021, 142, 110941. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, F.; Tang, Q.; Xu, C.S.; Ni, Z.J.; Meng, X. Effects of Curcumin-Based Photodynamic Treatment on the Storage Quality of Fresh-Cut Apples. Food Chem. 2019, 274, 415–421. [Google Scholar] [CrossRef]
- Lavinia, M.; Hibaturrahman, S.N.; Harinata, H.; Wardana, A.A. Antimicrobial Activity and Application of Nanocomposite Coating from Chitosan and ZnO Nanoparticle to Inhibit Microbial Growth on Fresh-Cut Papaya. Food Res. 2020, 4, 307–311. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Pizato, S.; De Souza, J.T.A.; Prentice, C. Using Edible Coatings from Whitemouth Croaker (Micropogonias furnieri) Protein Isolate and Organo-Clay Nanocomposite for Improve the Conservation Properties of Fresh-Cut “Formosa” Papaya. Innov. Food Sci. Emerg. Technol. 2014, 22, 197–202. [Google Scholar] [CrossRef]
- Tabassum, N.; Aftab, R.A.; Yousuf, O.; Ahmad, S.; Zaidi, S. Application of Nanoemulsion Based Edible Coating on Fresh-Cut Papaya. J. Food Eng. 2023, 355, 111579. [Google Scholar] [CrossRef]
- Luciano, W.A.; Pimentel, T.C.; Bezerril, F.F.; Barão, C.E.; Marcolino, V.A.; de Siqueira Ferraz Carvalho, R.; dos Santos Lima, M.; Martín-Belloso, O.; Magnani, M. Effect of Citral Nanoemulsion on the Inactivation of Listeria monocytogenes and Sensory Properties of Fresh-Cut Melon and Papaya during Storage. Int. J. Food Microbiol. 2023, 384, 109959. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A. Applications of Polymeric Nanoparticles in Food Sector; Siddiquee, S., Hong Melvin, G.J., Rahman, M.M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; ISBN 9783319996028. [Google Scholar]
- Jafari, S.M. An Overview of Nanoencapsulation Techniques and Their Classification; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128094365. [Google Scholar]
- Ahmadi, P.; Jahanban-Esfahlan, A.; Ahmadi, A.; Tabibiazar, M.; Mohammadifar, M. Development of Ethyl Cellulose-Based Formulations: A Perspective on the Novel Technical Methods. Food Rev. Int. 2022, 38, 685–732. [Google Scholar] [CrossRef]
- Din, M.I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Khalid, R.; Zahid, H. Potential Perspectives of Biodegradable Plastics for Food Packaging Application-Review of Properties and Recent Developments. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 665–680. [Google Scholar] [CrossRef]
- Galindo-Pérez, M.J.; Quintanar-Guerrero, D.; Cornejo-Villegas, M.d.l.Á.; Zambrano-Zaragoza, M.d.l.L. Optimization of the Emulsification-Diffusion Method Using Ultrasound to Prepare Nanocapsules of Different Food-Core Oils. LWT 2018, 87, 333–341. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Cao, Y.; Wang, J.; Xiao, J. Influence of Microcrystalline Cellulose on the Microrheological Property and Freeze-Thaw Stability of Soybean Protein Hydrolysate Stabilized Curcumin Emulsion. LWT Food Sci. Technol. 2016, 66, 590–597. [Google Scholar] [CrossRef]
- Wang, Z.W.; Duan, H.W.; Hu, C.Y. Modelling the Respiration Rate of Guava (Psidium guajava L.) Fruit Using Enzyme Kinetics, Chemical Kinetics and Artificial Neural Network. Eur. Food Res. Technol. 2009, 229, 495–503. [Google Scholar] [CrossRef]
- Iqbal, T.; Rodrigues, F.A.S.; Mahajan, P.V.; Kerry, J.P.; Gil, L.; Manso, M.C.; Cunha, L.M. Effect of Minimal Processing Conditions on Respiration Rate of Carrots. J. Food Sci. 2008, 73, 396–402. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.d.l.L.; Mercado-Silva, E.; Del Real, L.A.; Gutiérrez-Cortez, E.; Cornejo-Villegas, M.A.; Quintanar-Guerrero, D. The Effect of Nano-Coatings with α-Tocopherol and Xanthan Gum on Shelf-Life and Browning Index of Fresh-Cut “Red Delicious” Apples. Innov. Food Sci. Emerg. Technol. 2014, 22, 188–196. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Austin, P.J. Continuous Spectrophotometric Assay for Plant Pectin Methyl Esterase. J. Agric. Food Chem. 1986, 34, 440–444. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, l1.1.1–l1.1.8. [Google Scholar]
- Chien, P.J.; Sheu, F.; Yang, F.H. Effects of Edible Chitosan Coating on Quality and Shelf Life of Sliced Mango Fruit. J. Food Eng. 2007, 78, 225–229. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking Bioactive Compounds with Colour Changes in Foods—A Review. Dye. Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Hasani, S.; Ojagh, S.M.; Ghorbani, M. Nanoencapsulation of Lemon Essential Oil in Chitosan-Hicap System. Part 1: Study on Its Physical and Structural Characteristics. Biol. Macromol. 2018, 115, 143–151. [Google Scholar] [CrossRef]
- Liu, C.; Liang, B.; Shi, G.; Li, Z.; Zheng, X. Preparation and Characteristics of Nanocapsules Containing Essential Oil for Textile Application. Flavour Fragr. J. 2015, 30, 295–301. [Google Scholar] [CrossRef]
- Pan, K.; Zhong, Q.; Baek, S.J. Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. J. Agric. Food Chem. 2013, 61, 6036–6043. [Google Scholar] [CrossRef]
- Zanotto-Filho, A.; Coradini, K.; Braganhol, E.; Schröder, R.; De Oliveira, C.M.; Simoes-Pires, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Forcelini, C.M.; et al. Curcumin-Loaded Lipid-Core Nanocapsules as a Strategy to Improve Pharmacological Efficacy of Curcumin in Glioma Treatment. Eur. J. Pharm. Biopharm. 2013, 83, 156–167. [Google Scholar] [CrossRef]
- Klippstein, R.; Wang, J.T.; El-gogary, R.I.; Bai, J.; Mustafa, F.; Rubio, N.; Bansal, S.; Al-jamal, W.T. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo. Small 2015, 11, 4704–4722. [Google Scholar] [CrossRef]
- Umerska, A.; Gaucher, C.; Oyarzun-Ampuero, F.; Fries-Raeth, I.; Colin, F.; Villamizar-Sarmiento, M.G.; Maincent, P.; Sapin-Minet, A. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants 2018, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Suwannateep, N.; Banlunara, W.; Wanichwecharungruang, S.P.; Chiablaem, K.; Lirdprapamongkol, K.; Svasti, J. Mucoadhesive Curcumin Nanospheres: Biological Activity, Adhesion to Stomach Mucosa and Release of Curcumin into the Circulation. J. Control. Release 2011, 151, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Bagherifam, S.; Griffiths, G.W.; Mælandsmo, G.M.; Nyström, B.; Hasirci, V.; Hasirci, N. Poly(Sebacic Anhydride) Nanocapsules as Carriers: Effects of Preparation Parameters on Properties and Release of Doxorubicin. J. Microencapsul. 2015, 32, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Rodriguez, S.; Allémann, E.; Fessi, H.; Doelker, E. Physicochemical Parameters Associated with Nanoparticle Formation in the Salting-out, Emulsification-Diffusion, and Nanoprecipitation Methods. Pharm. Res. 2004, 21, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Piirma, I. Polymeric Surfactants; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 1992; ISBN 9780824786083. [Google Scholar]
- Sun, C.; Xu, C.; Mao, L.; Wang, D.; Yang, J.; Gao, Y. Preparation, Characterization and Stability of Curcumin-Loaded Zein-Shellac Composite Colloidal Particles. Food Chem. 2017, 228, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Cayado, L.A.; Alfaro, M.C.; Muñoz, J. Effects of Ethoxylated Fatty Acid Alkanolamide Concentration and Processing on D-Limonene Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 198–203. [Google Scholar] [CrossRef]
- Pérez-Mosqueda, L.M.; Trujillo-Cayado, L.A.; Carrillo, F.; Ramírez, P.; Muñoz, J. Formulation and Optimization by Experimental Design of Eco-Friendly Emulsions Based on d-Limonene. Colloids Surf. B Biointerfaces 2015, 128, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; McClements, D.J. Impact of Lemon Oil Composition on Formation and Stability of Model Food and Beverage Emulsions. Food Chem. 2012, 134, 749–757. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, G.; Zhao, C.; Li, C.; Bao, Y.; DiMarco-Crook, C.; Tang, Z.; Li, C.; Julian McClements, D.; Xiao, H.; et al. The Stability of Three Different Citrus Oil-in-Water Emulsions Fabricated by Spontaneous Emulsification. Food Chem. 2018, 269, 577–587. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Mohamed Amin Tawakkal, I.S.; Muda Mohamed, M.T. Recent Advance in Edible Coating and Its Effect on Fresh/Fresh-Cut Fruits Quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Hasan, S.M.K.; Ferrentino, G.; Scampicchio, M. Nanoemulsion as Advanced Edible Coatings to Preserve the Quality of Fresh-Cut Fruits and Vegetables: A Review. Int. J. Food Sci. Technol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Q.; Li, D.; Li, W.; Li, L.; Aalim, H.; Luo, Z. Moderation of Respiratory Cascades and Energy Metabolism of Fresh-Cut Pear Fruit in Response to High CO2 Controlled Atmosphere. Postharvest Biol. Technol. 2021, 172, 111379. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Bai, J. Physiology of Fresh-Cut Fruits and Vegetables. In Advances in Fresh-Cut Fruits and Vegetables Processing; Martín-Belloso, O., Soliva-Fortuny, R., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 2011; pp. 87–113. ISBN 9781420031874. [Google Scholar]
- Toivonen, P.M.A.; Brummell, D.A. Biochemical Bases of Appearance and Texture Changes in Fresh-Cut Fruit and Vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of Chitosan-Lemon Essential Oil Coatings on Storage-Keeping Quality of Strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Chitosan Nanoparticles Loaded with Cinnamomum Zeylanicum Essential Oil Enhance the Shelf Life of Cucumber during Cold Storage. Postharvest Biol. Technol. 2015, 110, 203–213. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of Chitosan Coatings on the Physicochemical Characteristics of Eksotika II Papaya (Carica Papaya L.) Fruit during Cold Storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Mochizuki, M.; Hirano, M.; Kanmuri, Y.; Kudo, K.; Tokiwa, Y. Hydrolysis of Polycaprolactone Fibers by Lipase: Effects of Draw Ratio on Enzymatic Degradation. J. Appl. Polym. Sci. 1995, 55, 289–296. [Google Scholar] [CrossRef]
- Perdones, Á.; Vargas, M.; Atarés, L.; Chiralt, A. Physical, Antioxidant and Antimicrobial Properties of Chitosan-Cinnamon Leaf Oil Films as Affected by Oleic Acid. Food Hydrocoll. 2014, 36, 256–264. [Google Scholar] [CrossRef]
- Malvano, F.; Corona, O.; Pham, P.L.; Cinquanta, L.; Pollon, M.; Bambina, P.; Farina, V.; Albanese, D. Effect of Alginate-Based Coating Charged with Hydroxyapatite and Quercetin on Colour, Firmness, Sugars and Volatile Compounds of Fresh Cut Papaya during Cold Storage. Eur. Food Res. Technol. 2022, 248, 2833–2842. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Z.; Chen, F.; Luo, X.; McClements, D.J. Impact of Delivery System Type on Curcumin Stability: Comparison of Curcumin Degradation in Aqueous Solutions, Emulsions, and Hydrogel Beads. Food Hydrocoll. 2017, 71, 187–197. [Google Scholar] [CrossRef]
- Jayathunge, K.G.L.R.; Gunawardhana, D.K.S.N.; Illeperuma, D.C.K.; Chandrajith, U.G.; Thilakarathne, B.M.K.S.; Fernando, M.D.; Palipane, K.B. Physico-Chemical and Sensory Quality of Fresh Cut Papaya (Carica Papaya) Packaged in Micro-Perforated Polyvinyl Chloride Containers. J. Food Sci. Technol. 2014, 51, 3918–3925. [Google Scholar] [CrossRef] [PubMed]
- Price, L.C.; Buescher, R.W. Decomposition of Turmeric Curcuminoids as Affected by Light, Solvent and Oxygen. J. Food Biochem. 2007, 20, 125–133. [Google Scholar] [CrossRef]
- Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem. 2015, 63, 7606–7614. [Google Scholar] [CrossRef] [PubMed]
- Ergun, M.; Huber, D.; Jeong, J.; Bartz, J.A. Extended Shelf Life and Quality of Fresh-Cut Papaya Derived from Ripe Fruit Treated with the Ethylene Antagonist 1-Methylcyclopropene. J. Am. Soc. Hortic. Sci. 2006, 131, 97–103. [Google Scholar] [CrossRef]
- Allanigue, D.K.A.; Sabularse, V.C.; Hernandez, H.P.; Serrano, E.P. The Effect of Chitosan-Based Nanocomposite Coating on the Postharvest Life of Papaya (Carica Papaya L.) Fruits. Philipp. Agric. Sci. 2017, 100, 233–242. [Google Scholar]
- Velderrain-Rodríguez, G.R.; Ovando-Martínez, M.; Villegas-Ochoa, M.; Ayala-Zavala, J.F.; Wall-Medrano, A.; Álvarez-Parrilla, E.; Madera-Santana, T.J.; Astiazarán-García, H.; Tortoledo-Ortiz, O.; González-Aguilar, G.A. Antioxidant Capacity and Bioaccessibility of Synergic Mango (Cv. Ataulfo) Peel Phenolic Compounds in Edible Coatings Applied to Fresh-Cut Papaya. Food Nutr. Sci. 2015, 6, 365–373. [Google Scholar] [CrossRef]
- Karakurt, Y.; Huber, D.J. Activities of Several Membrane and Cell-Wall Hydrolases, Ethylene Biosynthetic Enzymes, and Cell Wall Polyuronide Degradation during Low-Temperature Storage of Intact and Fresh-Cut Papaya (Carica Papaya) Fruit. Postharvest Biol. Technol. 2003, 28, 219–229. [Google Scholar] [CrossRef]
- Formiga, A.S.; Pereira, E.M.; Junior, J.S.P.; Costa, F.B.; Mattiuz, B.H. Effects of Edible Coatings on the Quality and Storage of Early Harvested Guava. Food Chem. Adv. 2022, 1, 100124. [Google Scholar] [CrossRef]
- Pilon, L.; Spricigo, P.C.; Miranda, M.; de Moura, M.R.; Assis, O.B.G.; Mattoso, L.H.C.; Ferreira, M.D. Chitosan Nanoparticle Coatings Reduce Microbial Growth on Fresh-Cut Apples While Not Affecting Quality Attributes. Int. J. Food Sci. Technol. 2015, 50, 440–448. [Google Scholar] [CrossRef]
- Galindo-Pérez, M.J.; Quintanar-Guerrero, D.; Mercado-Silva, E.; Real-Sandoval, S.A.; Zambrano-Zaragoza, M.L. The Effects of Tocopherol Nanocapsules/Xanthan Gum Coatings on the Preservation of Fresh-Cut Apples: Evaluation of Phenol Metabolism. Food Bioprocess Technol. 2015, 8, 1791–1799. [Google Scholar] [CrossRef]
- Macleod, G.S.; Fell, J.T.; Collett, J.H. Studies on the Physical Properties of Mixed Pectin/Ethylcellulose Films Intended for Colonic Drug Delivery. Int. J. Pharm. 1997, 157, 53–60. [Google Scholar] [CrossRef]
- Kagan, V.E.; Tyurina, Y.Y. Recycling and Redox Cycling of Phenolic Antioxidants. Ann. N. Y. Acad. Sci. 1998, 854, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Zaragoza, M.L.; Gutiérrez-Cortez, E.; Del Real, A.; González-Reza, R.M.; Galindo-Pérez, M.J.; Quintanar-Guerrero, D. Fresh-Cut Red Delicious Apples Coating Using Tocopherol/Mucilage Nanoemulsion: Effect of Coating on Polyphenol Oxidase and Pectin Methylesterase Activities. Food Res. Int. 2014, 62, 974–983. [Google Scholar] [CrossRef]
System | Ps (nm) | PDI | ζ (mV) |
---|---|---|---|
NC L/EC | 116 ± 0.72 | 0.126 ± 0.02 | −7.52 ± 0.53 |
NC L/PCL | 87.57 ± 0.34 | 0.142 ± 0.01 | −12.43 ± 0.98 |
NC C/EC | 115.73 ± 0.83 | 0.246 ± 0.01 | −6.15 ± 1.04 |
NC C/PCL | 100.18 ± 0.98 | 0.167 ± 0.01 | −5.80 ± 0.78 |
System | Instability Mechanism | Average Migration Rate in the Bottom (µm/min) | Average Migration Rate in the Top (µm/min) |
---|---|---|---|
NC L/EC | Sedimentation | 0.023 | 0.015 |
NC L/PCL | Sedimentation | 0.010 | 0.013 |
NC C/EC | Sedimentation | 0.011 | 0.012 |
NC C/PCL | Sedimentation | 0.009 | 0.010 |
Time | Control | NC L/EC | NC L/PCL | NC C/EC | NC C/PCL | |
---|---|---|---|---|---|---|
Day 0 | pH | 5.20 ± 0.01 | 5.25 ± 0.03 | 5.23 ± 0.01 | 5.11 ± 0.04 | 5.20 ± 0.04 |
Acidity (mg citric acid/100 g) | 0.518 ± 0.05 | 0.532 ± 0.01 | 0.525 ± 0.03 | 0.534 ± 0.07 | 0.538 ± 0.06 | |
Day 3 | pH | 5.21 ± 0.08 | 5.62 ± 0.02 | 5.45 ± 0.02 | 5.67 ± 0.02 | 5.33 ± 0.06 |
Acidity (mg citric acid/100 g) | 0.395 ± 0.02 | 0.529 ± 0.02 | 0.431 ± 0.02 | 0.375 ± 0.02 | 0.533 ± 0.02 | |
Day 5 | pH | 5.30 ± 0.02 | 5.55 ± 0.09 | 5.54 ± 0.05 | 5.53 ± 0.04 | 5.59 ± 0.04 |
Acidity (mg citric acid/100 g) | 0.363 ± 0.05 | 0.497 ± 0.02 | 0.395 ± 0.02 | 0.400 ± 0.02 | 0.463 ± 0.02 | |
Day 7 | pH | 5.23 ± 0.02 | 5.37 ± 0.05 | 5.37 ± 0.04 | 5.41 ± 0.05 | 5.38 ± 0.03 |
Acidity (mg citric acid/100 g) | 0.405 ± 0.02 | 0.568 ± 0.01 | 0.494 ± 0.02 | 0.535 ± 0.01 | 0.509 ± 0.03 | |
Day 10 | pH | 5.35 ± 0.01 | 5.25 ± 0.01 | 5.52 ± 0.01 | 5.40 ± 0.07 | 5.48 ± 0.01 |
Acidity (mg citric acid/100 g) | 0.469 ± 0.04 | 0.520 ± 0.01 | 0.689 ± 0.02 | 0.608 ± 0.03 | 0.546 ± 0.03 | |
Day 12 | pH | 5.16 ± 0.04 | 5.16 ± 0.06 | 5.35 ± 0.12 | 5.48 ± 0.03 | 5.46 ± 0.02 |
Acidity (mg citric acid/100 g) | 0.416 ± 0.03 | 0.560 ± 0.02 | 0.515 ± 0.03 | 0.511 ± 0.03 | 0.469 ± 0.02 | |
Day 14 | pH | 5.08 ± 0.03 | 5.27 ± 0.04 | 4.94 ± 0.05 | 5.40 ± 0.02 | 5.30 ± 0.04 |
Acidity (mg citric acid/100 g) | 0.427 ± 0.05 | 0.417 ± 0.01 | 0.592 ± 0.02 | 0.428 ± 0.02 | 0.546 ± 0.03 | |
Day 17 | pH | 4.97 ± 0.05 | 5.56 ± 0.04 | 4.86 ± 0.04 | 5.47 ± 0.04 | 5.29 ± 0.04 |
Acidity (mg citric acid/100 g) | 0.416 ± 0.03 | 0.480 ± 0.03 | 0.656 ± 0.02 | 0.449 ± 0.01 | 0.576 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo-Pérez, M.J.; Martínez-Acevedo, L.; Vidal-Romero, G.; Serrano-Mora, L.E.; Zambrano-Zaragoza, M.d.l.L. Preservation of Fresh-Cut ‘Maradol’ Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin. Polymers 2023, 15, 3515. https://doi.org/10.3390/polym15173515
Galindo-Pérez MJ, Martínez-Acevedo L, Vidal-Romero G, Serrano-Mora LE, Zambrano-Zaragoza MdlL. Preservation of Fresh-Cut ‘Maradol’ Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin. Polymers. 2023; 15(17):3515. https://doi.org/10.3390/polym15173515
Chicago/Turabian StyleGalindo-Pérez, Moises Job, Lizbeth Martínez-Acevedo, Gustavo Vidal-Romero, Luis Eduardo Serrano-Mora, and María de la Luz Zambrano-Zaragoza. 2023. "Preservation of Fresh-Cut ‘Maradol’ Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin" Polymers 15, no. 17: 3515. https://doi.org/10.3390/polym15173515
APA StyleGalindo-Pérez, M. J., Martínez-Acevedo, L., Vidal-Romero, G., Serrano-Mora, L. E., & Zambrano-Zaragoza, M. d. l. L. (2023). Preservation of Fresh-Cut ‘Maradol’ Papaya with Polymeric Nanocapsules of Lemon Essential Oil or Curcumin. Polymers, 15(17), 3515. https://doi.org/10.3390/polym15173515