Redox-Active Ferrocene Polymer for Electrode-Active Materials: Step-by-Step Synthesis on Gold Electrode Using Automatic Sequential Polymerization Equipment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Synthesis
2.3.1. Automatic Sequential Polymerization Equipment
2.3.2. Preparation of Polymer Electrodes
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishide, H.; Oyaizu, K. Toward Flexible Batteries. Science 2008, 319, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-P.; Zhou, H.-S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301. [Google Scholar] [CrossRef]
- Akerlund, L.; Emanuelsson, R.; Renault, S.; Huang, H.; Brandell, D.; Stromme, M.; Sjodin, M. The Proton Trap Technology—Toward High Potential Quinone-Based Organic Energy Storage. Adv. Energy Mater. 2017, 7, 1700259. [Google Scholar] [CrossRef]
- Emanuelsson, R.; Sterby, M.; Stromme, M.; Sjodin, M. An All-Organic Proton Battery. J. Am. Chem. Soc. 2017, 139, 4828–4834. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, K.; Nishide, H. Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers? Adv. Mater. 2009, 21, 2339–2344. [Google Scholar] [CrossRef]
- Sato, K.; Ichinoi, R.; Mizukami, R.; Serikawa, T.; Sasaki, Y.; Lutkenhaus, J.; Nishide, H.; Oyaizu, K. Diffusion-Cooperative Model for Charge Transport by Redox-Active Nonconjugated Polymers. J. Am. Chem. Soc. 2018, 140, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Akutagawa, N.; Satoh, M.; Wada, J.; Masuda, T. Charge/Discharge Properties of Organometallic Batteries Fabricated with Ferrocene–Containing Polymers. Macromol. Rapid Commun. 2008, 29, 1944–1949. [Google Scholar] [CrossRef]
- Mondal, S.; Yoshida, T.; Maji, S.; Ariga, K.; Higuchi, M. Transparent Supercapacitor Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Appl. Mater. Interfaces 2020, 12, 16342–16349. [Google Scholar] [CrossRef]
- Oyaizu, K.; Ando, Y.; Konishi, H.; Nishide, H. Nernstian Adsorbate-like Bulk Layer of Organic Radical Polymers for High-Density Charge Storage Purposes. J. Am. Chem. Soc. 2008, 130, 14459–14461. [Google Scholar] [CrossRef]
- Janoschka, T.; Hager, M.D.; Schubert, U.S. Powering up the Future: Radical Polymers for Battery Applications. Adv. Mater. 2012, 24, 6397–6409. [Google Scholar] [CrossRef]
- Karlsson, C.; Suga, T.; Nishide, H. Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery. ACS Appl. Mater. Interfaces 2017, 9, 10692–10698. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-Active Materials in High-Density and Rechargeable Polymer/Air Batteries. J. Am. Chem. Soc. 2011, 133, 19839–19843. [Google Scholar] [CrossRef]
- Oka, K.; Furukawa, S.; Murao, S.; Oka, T.; Nishide, H.; Oyaizu, K. Poly(dihydroxybenzoquinone): Its high-density and robust charge storage capability in rechargeable acidic polymer–air batteries. Chem. Commun. 2020, 56, 4055–4058. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.G.; Hwang, B.I.; Kim, D.; Hyun, S.; Han, S.M. Polypyrrole–MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.H.; Ariga, K. Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule 2017, 1, 739–768. [Google Scholar] [CrossRef]
- Wu, Z.-Z.; Liu, Q.-R.; Yang, P.; Chen, H.; Zhang, Q.-C.; Li, S.; Tang, Y.-B.; Zhang, S.-Q. Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. Electrochem. Energy Rev. 2022, 5, 26. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Marijuan, A.F.; Dias, J.C.; Gonçalves, R.; Salado, M.; Costa, C.M.; Mendez, S.L. Molecular design of functional polymers for organic radical batteries. Energy Storage Mater. 2023, 60, 102841. [Google Scholar] [CrossRef]
- Rehman, A.U.; Afzal, A.M.; Iqbal, M.W.; Ali, M.; Wabaidur, S.M.; Al-Ammar, E.A.; Mumtaz, S.; Choi, E.H. Highly efficient and stable layered AgZnS@WS2 nanocomposite electrode as superior charge transfer and active redox sites for energy harvesting device. J. Energy Stor. 2023, 71, 108022. [Google Scholar] [CrossRef]
- Bain, C.D.; Whitesides, G.M. Molecular-Level Control over Surface Order in Self-Assembled Monolayer Films of Thiols on Gold. Science 1988, 240, 62–63. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J. Am. Chem. Soc. 1992, 114, 9022–9028. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Li, M.; Ly, H. Stability and Self-Exchange in Alkanethiol Monolayers. J. Am. Chem. Soc. 1995, 117, 12528–12536. [Google Scholar] [CrossRef]
- Murugan, P.; Krishnamurthy, M.; Jaisankar, S.N.; Samanta, D.; Mandal, A.B. Controlled decoration of the surface with macromolecules: Polymerization on a self-assembled monolayer (SAM). Chem. Soc. Rev. 2015, 44, 3212–3243. [Google Scholar] [CrossRef]
- Yi, R.-W.; Mao, Y.-Y.; Shen, Y.-B.; Chen, L.-W. Self-Assembled Monolayers for Batteries. J. Am. Chem. Soc. 2021, 143, 12897–12912. [Google Scholar] [CrossRef]
- Guo, H.-X.; Yoshida, Y.; Aota, H. Structure-controlled polymers prepared by pseudo-living addition-condensation polymerization and their application to light harvesting. Chem. Commun. 2016, 52, 11819–11822. [Google Scholar] [CrossRef]
- Guo, H.-X.; Aota, H. Light-harvesting and Electron Transfer in a Structure-controlled Polymer for Artificial Photosynthetic Antenna-reaction Centers. Chem. Lett. 2017, 46, 191–193. [Google Scholar] [CrossRef]
- Park, K.-S.; Schougaard, S.B.; Goodenough, J.B. Conducting-Polymer/Iron-Redox- Couple Composite Cathodes for Lithium Secondary Batteries. Adv. Mater. 2007, 19, 848–851. [Google Scholar] [CrossRef]
Sample | Redox Potential/V | Peak to Peak/V | Charges Recorded at 1 s/×10−4 C |
---|---|---|---|
20 | 0.11 | 0.231 | 2.17 |
40 | 0.107 | 0.361 | 4.78 |
80 | 0.111 | 0.313 | 7.14 |
Fc | 0.035 | 0.430 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.-X.; Takemura, Y.; Tange, D.; Kurata, J.; Aota, H. Redox-Active Ferrocene Polymer for Electrode-Active Materials: Step-by-Step Synthesis on Gold Electrode Using Automatic Sequential Polymerization Equipment. Polymers 2023, 15, 3517. https://doi.org/10.3390/polym15173517
Guo H-X, Takemura Y, Tange D, Kurata J, Aota H. Redox-Active Ferrocene Polymer for Electrode-Active Materials: Step-by-Step Synthesis on Gold Electrode Using Automatic Sequential Polymerization Equipment. Polymers. 2023; 15(17):3517. https://doi.org/10.3390/polym15173517
Chicago/Turabian StyleGuo, Hao-Xuan, Yuriko Takemura, Daisuke Tange, Junichi Kurata, and Hiroyuki Aota. 2023. "Redox-Active Ferrocene Polymer for Electrode-Active Materials: Step-by-Step Synthesis on Gold Electrode Using Automatic Sequential Polymerization Equipment" Polymers 15, no. 17: 3517. https://doi.org/10.3390/polym15173517
APA StyleGuo, H. -X., Takemura, Y., Tange, D., Kurata, J., & Aota, H. (2023). Redox-Active Ferrocene Polymer for Electrode-Active Materials: Step-by-Step Synthesis on Gold Electrode Using Automatic Sequential Polymerization Equipment. Polymers, 15(17), 3517. https://doi.org/10.3390/polym15173517